One woman's cancer battle highlights promise of new treatment

May 8, 2014 by Amy Norton, Healthday Reporter
Left lung CT scan of Patient 3737 before (left) and 6 months after (right) adoptive cell therapy with mutation-specific CD4+ T cells. Arrows point to metastatic cholangiocarcinoma lesions. Credit: Jim Yang

Just over two years ago, Melinda Bachini decided she was done with chemotherapy to treat her cholangiocarcinoma—a rare cancer of the bile duct that runs from the liver to the intestines.

At that point, she'd gone through three rounds of chemo, with little to show for it except side effects. The cancer was in her liver and lungs, and the outlook was grim.

"I knew if I was going to beat this, it would have to be with an experimental therapy," said Bachini, a mother of six who was diagnosed at the age of 41—on her son's 14th birthday.

So Bachini did what most of us do when we want information: She went online, where she "stumbled upon" a clinical trial at the U.S. National Cancer Institute (NCI). It was testing an against advanced cases of ; the idea was to use people's own T-cells to fight their genetically unique cancer.

"It made sense," Bachini said. "It's your own body doing what it's supposed to do. I told my husband this was it."

In March 2012, Bachini was accepted into the trial and soon began the treatment, known as adoptive cell therapy. Now her case is being reported online May 8 in the journal Science—in what experts call a "blueprint" that could be translated into therapies for the most common cancers out there.

"It's still highly experimental," cautioned Dr. Steven Rosenberg, the senior NCI researcher on the study.

But, he said, Bachini's case "opens the door" to developing personalized treatments that harness the immune system to target specific mutations in individual cancers.

There's nothing new about immunotherapy—the general term for any treatment that boosts the immune system's cancer-fighting capacity.

But in the past several years, new techniques have allowed "huge progress" against melanoma and kidney cancers, said Dr. Steven O'Day, an immunotherapy expert who was not involved in the study.

Melanoma and are, by nature, relatively susceptible to the immune system, explained O'Day, who sits on the cancer communications committee of the American Society of Clinical Oncology.

"But [immunotherapy] has had much less success against the common epithelial cancers," O'Day said. Epithelial tumors account for over 80 percent of all cancers, include Bachini's type of cancer, and such major ones as colon, lung, breast and .

"Those cancers stay hidden from the immune system much better," O'Day explained.

That's why the success in Bachini's case is a "breakthrough," he said.

"This is a very exciting proof-of-principle that we can use the tools working so well now in melanoma, and apply them to other cancers," O'Day said.

However, he stressed, "we've still got a long way to go."

To treat Bachini, Rosenberg's team started by analyzing T-cells in tumor samples from her lungs. It turned out that some of those T-cells reacted to a specific mutated protein in her cancer.

The researchers then produced an army of those T-cells in the lab, and infused Bachini with over 42 billion of them—about one-quarter of which were reactive to the mutation. That was enough to halt the growth of her liver and lung tumors for a year, when the disease began to progress again.

So Bachini got a second treatment, but this time nearly all of the T-cells were reactive to the mutation. That treatment, which was done over six months ago, quickly started shrinking the lung and liver tumors.

And they are still regressing, Rosenberg said.

According to Bachini, the chronic cough that once plagued her disappeared about a week after the treatment. "Now I'm able to walk two miles a day with my dog," she said. "And I skied a lot this winter."

Bachini does have nerve damage in her hands and feet—a lingering side effect of her chemotherapy.

And there is still a long road ahead, for both Bachini and this therapy. Even if future studies find the approach effective in various cancers, it will not be like giving a drug.

The specific gene mutations that trigger a T-cell reaction will vary from person to person—even when they have the same cancer, Rosenberg explained. The process of creating individualized T-cell therapies for every patient is no small task.

Yet that complexity is also the "beauty" of immunotherapy, Rosenberg said. With cancer, he noted, the "holy grail" is to have treatments that are fine-tuned to kill a patient's cells but leave healthy ones alone.

"This will be challenging to implement in the real world," Rosenberg said. "But it's doable."

In fact, he and O'Day said, the ultimate hope is that immunotherapy will replace chemotherapy for many cancers.

As for Bachini, she hopes her experience ends up helping others. "There's nothing I want more than for this to be successful for other people," she said.

Explore further: Moffitt Cancer Center begins Phase I clinical trial of new immunotherapy

More information: "Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer," by E. Tran et al. Science, 2014.

Related Stories

Moffitt Cancer Center begins Phase I clinical trial of new immunotherapy

April 10, 2014
Moffitt Cancer Center has initiated a phase I clinical trial for a new immunotherapy drug, ID-G305, made by Immune Design. Immunotherapy is a treatment option that uses a person's own immune system to fight cancer. It has ...

Immunogenic mutations in tumor genomes correlate with increased patient survival

April 29, 2014
Developing immunotherapies for cancer is challenging because of significant variability among tumors and diversity in human immune types. In a study published online today in Genome Research, researchers examined the largest ...

Physicians target the genes of lung, colon cancers

April 16, 2014
(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

Common cancers evade detection by silencing parts of immune system cells

March 4, 2014
Johns Hopkins researchers say they have identified a set of genes that appear to predict which tumors can evade detection by the body's immune system, a step that may enable them to eventually target only the patients most ...

Clinical trial examines use of human immune system to fight aggressive lung cancer

December 19, 2013
Researchers at the Cincinnati Cancer Center (CCC) and the UC Cancer Institute are conducting a clinical trial examining a method to stimulate the human immune system to destroy or block the growth of lung cancer cells.

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.