Finding the Achilles' Heel of ovarian tumor growth

June 19, 2014
This image depicts an ovarian tumor spheroid. FAK is stained red, osteopontin green and DNA blue. Credit: UC San Diego School of Medicine

A team of scientists, led by principal investigator David D. Schlaepfer, PhD, professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine report that small molecule inhibitors to a protein called focal adhesion kinase (FAK) selectively prevent the growth of ovarian cancer cells as tumor spheroids.

The findings come in a pair of studies published online this week in the journals Gynecologic Oncology and Molecular Cancer Therapeutics.

Ovarian cancer is a leading cause of female cancer death in the United States. On average, more than 21,000 women are diagnosed with ovarian cancer each year and 14,270 die. Many women achieve remission, but cancer recurrence rates exceed 75 percent, prompting the need for new treatments.

"Ovarian cancer spreads within a women's peritoneal space through a unique mechanism that involves the survival of small clusters of tumor cells termed spheroids," said Schlaepfer. "Our studies show that FAK signaling functions at the center of a tumor cell survival signaling network."

In the first study, published in Gynecologic Oncology, first author Nina Shah, MD, a gynecological oncology fellow in the Department of Reproductive Medicine, found that ovarian tumor cells with low levels of a tumor suppressor protein, called merlin, displayed heightened sensitivity to FAK inhibitor growth cessation.

"With FAK inhibitor clinical trials already testing a similar linkage in mesothelioma (a rare cancer that affects the protective lining of many internal organs), our results support the hypothesis that protein biomarkers such as merlin may identify those patients who may best respond to FAK inhibitor therapy," said Schlaepfer.

In the second study in Molecular Cancer Therapeutics, first author Isabelle Tancioni PhD, an assistant project scientist at UC San Diego Moores Cancer Center discovered that a network of signals generated by osteopontin – a beta-5 integrin receptor used in cell-to-cell signaling – and FAK control ovarian cancer spheroid growth. High levels of beta-5 integrin and FAK expression are associated with a poor prognosis for some ovarian cancer patients. "Thus, high levels of beta-5 integrin may serve as a novel biomarker for ovarian carcinoma cells that possess active FAK signaling," said Schlaepfer.

Schlaepfer noted that recurrence and metastasis are responsible for the majority of ovarian -related deaths and said the new findings support ongoing clinical trials of FAK inhibitors as new agents in the fight to prevent progression.

Explore further: FAK helps tumor cells enter the bloodstream

Related Stories

FAK helps tumor cells enter the bloodstream

January 20, 2014
Cancer cells have something that every prisoner longs for—a master key that allows them to escape. A study in The Journal of Cell Biology describes how a protein that promotes tumor growth also enables cancer cells to use ...

Research yields potential target for epithelial ovarian cancer treatment

April 7, 2014
Epithelial ovarian cancer is often referred to as a silent killer: Advanced-stage disease has a low survival rate, and in a vast majority of patients, the disease has already spread to other organs at the time of diagnosis ...

Biomarkers predict time to ovarian cancer recurrence

August 15, 2013
Ovarian cancer often remains undetected until it is at an advanced stage. Despite positive responses to initial treatment, many patients are at risk of tumor recurrence. A multitude of genetic markers have been implicated ...

Scaffolding protein promotes growth and metastases of epithelial ovarian cancer

April 7, 2014
Researchers from Fox Chase Cancer Center have shown that NEDD9, a scaffolding protein responsible for regulating signaling pathways in the cell, promotes the growth and spread of epithelial ovarian cancer.

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Fak inhibitor proves effective against brain tumors in preclinical studies, study shows

December 24, 2012
(Medical Xpress)—Researchers from Roswell Park Cancer Institute (RPCI) have published findings from a preclinical study assessing the effectiveness of a small-molecule inhibitor, CFAK-Y15, in treating some brain cancers. ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.