Aging contributes to rapid rates of genomic change, signaling challenges for personalized medicine

June 24, 2014, Virginia Tech
Credit: Peter Griffin/public domain

(Medical Xpress)—Exploiting individual genomes for personalized medicine may be more complicated than medical scientists have suspected, researchers at Virginia Bioinformatics Institute have discovered.

In a paper published in June in the journal Aging, scientists from the institute's Medical Informatics and Systems Division found that occur in our bodies constantly, but the rate of change differed dramatically among various people.

The study has implications for , which will make use of genomic information to predict future diseases and treatments. With genomes continually shifting over time, the monitoring of genomic health will require more frequent measurement of patients' genomes.

"We have long known that there were mutations acquired in cancerous tumors, but this study confirms that our genome is constantly changing even in healthy tissues," said Harold "Skip" Garner, a professor of biological sciences and computer science at Virginia Tech and a professor of medicine at the Virginia Tech Carilion School of Medicine. "The implications on using genomic information for medicine and medical research in the future are tremendous. Things are not as simple as we once thought."

DNA in our cells changes from exposure to various environmental stressors. This can cause mutations in up to 13,000 genes that raise the risk of diabetes, kidney failure, cancer, rheumatoid arthritis, and Alzheimer's disease—conditions usually associated with aging.

The research may help scientists better understand how individuals tolerate environmental exposure and why some people seem to age faster or slower than others.

"We observed that certain portions of our genome age 100 times faster than others," Garner said. "Microsatellites, once considered 'junk DNA,' are known to be associated with many diseases. They change much faster than individual DNA bases (known as , or SNPs), so it is important that future studies look at this very dynamic part of the ."

The researchers used the latest DNA sequencing technology to study the genetic makeup of three individuals at different times in their lives, spanning nine to 16 years. One of the individuals had almost 10 times as many variations as the others, and was found to be at risk for many more potential diseases.

"We observed that the variation rate is specific to the individual and also varies even within an individual's genome," said Jasmin Bavarva, a geneticist at the institute and lead scientist on the project. "Understanding the dynamics of the genome is the key to the success of personalized genomics and this is a major step forward."

Explore further: Smoking-cessation products that contain nicotine may not be safest way to quit

More information: The research paper is available online: www.impactaging.com/papers/v6/n6/full/100674.html

Related Stories

Smoking-cessation products that contain nicotine may not be safest way to quit

June 12, 2014
(Medical Xpress)—The nicotine patch may do more harm than good, researchers at the Virginia Bioinformatics Institute are discovering.

Bacterial DNA may integrate into human genome more readily in tumor tissue

June 20, 2013
Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, according to a new study from the University of Maryland School of Medicine's Institute for Genome Sciences. Researchers ...

Immunogenic mutations in tumor genomes correlate with increased patient survival

April 29, 2014
Developing immunotherapies for cancer is challenging because of significant variability among tumors and diversity in human immune types. In a study published online today in Genome Research, researchers examined the largest ...

Genomic technology enters the mainstream practice of medicine

June 18, 2014
Clinical genome and exome sequencing (CGES) was once deemed exotic, but is increasingly being used by clinical geneticists and other specialists to diagnose rare, clinically unrecognizable, or puzzling disorders that are ...

People more likely to choose a spouse with similar DNA, research shows

May 19, 2014
Individuals are more genetically similar to their spouses than they are to randomly selected individuals from the same population, according to a new study from the University of Colorado Boulder.

Scripps Wellderly Genome Resource now available to researchers

March 6, 2014
Scientists exploring the genetic causes of illnesses such as Alzheimer's disease, heart disease, cancer and diabetes now have a new tool – a reference DNA dataset built by researchers at Scripps Translational Science Institute ...

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.