Researchers discover more than 40 melanoma-specific genes that determine aggressiveness

June 27, 2014, Centro Nacional de Investigaciones Oncologicas (CNIO)
Melanoma cells showing an increased of RAB7 protein levels in the endosomes. Credit: CNIO

Researchers from the Spanish National Cancer Research Centre (CNIO) have discovered more than 40 genes that predict the level of aggressiveness of melanoma and that distinguish it from other cancers with a poor prognosis. The discovery, published in Cancer Cell, will help to identify unique aspects of melanoma that could contribute to determine the risk of developing metastasis in patients with this disease. This study is relevant because it explains why a drug, also described by CNIO, is being used to selectively attack the melanoma tumour cells. Melanoma is one of the worst, most metastatic cancers known today.

What is the function of these genes? Strangely, the factors that are increased in melanoma share a common mechanism: the formation of vesicles called endosomes.

Endosomes are machinery that tumour cells, via a process called endocytosis, can use to incorporate components into their environment and obtain energy by degrading them via autodigestion or autophagy. Autophagy is also used for self-cleaning to eliminate other proteins as well as damaged or unneeded cellular components.

Among all the genes that control endocytosis, the authors of the study focused specifically on one, called RAB7; this gene is highly expressed in . After more than six years of research, the research team led by María Soengas, head of CNIO's Melanoma Group, showed that RAB7 acts as an orchestra director, determining the fate of melanoma cells: at high concentrations of RAB7, cellular autodigestion is very active, and this allows tumour cells to obtain energy, prevent the accumulation of toxic components and thus divide and proliferate; when RAB7 is reduced, cells use endosomes to recycle metastatic proteins, favouring their dispersal throughout the body.

Defining "the key to the fate of the tumour cell", as Soengas says, is just one of many new aspects of melanoma uncovered by this study. "Finding which mechanisms determine why melanoma is so aggressive is very complex because more than 80,000 mutations have been described for this tumour", says Direna-Alonso Curbelo, the article's first author.

Potential clinical applications

This study is also relevant for clinical work. One application is the prognosis of the melanoma: the authors show in tumour biopsies that the amount of RAB7 in a cutaneous tumour defines the risk of developing metastasis. "This study opens avenues for the potential use of proteins that control vesicles and regulate autophagy as novel markers of patient survival", says Soengas.

Furthermore, these results help to understand the mechanism of action of a compound that, as the group discovered in 2009, is lethal in melanoma cells as well as in other tumour cells. This RNA-based nanoparticle compound kills the cells by acting on the formation of vesicles.

"We knew how our nanoparticles act inside tumour cells, but not how they selectively incorporate inside the cells", says Soengas. The size of these molecules requires cells to form endosomes in order to be able to trap the compound. This study demonstrates that this endosome formation (via RAB7) is very active in but not in . Normal cells, therefore, do not incorporate RNA nanoparticles, reducing the risk of toxic effects.

The work published in Cancer Cell complements previous research efforts from the CNIO Melanoma Group, which could lead to the development of novel drugs that selectively target the mechanism of cell autodigestion as a potential therapeutic strategy.

Multidisciplinary approach

This has been a multidisciplinary study in which many new computational techniques have been used to process large amounts of genomic data. CNIO's Bioinformatics Unit has been key in comparing 900 cell lines derived from up to 35 tumour types in order to identify unique aspects of melanoma. On the other hand, CNIO's Molecular Imaging Unit has made it possible to analyse vesicle formation mechanisms at high resolution and in real-time.

The study's authors have worked alongside researchers from the Memorial Sloan Kettering Cancer Center in New York, as well as with dermatologists and pathologists from the hospital 12 de Octubre in Madrid, and experts in the field of melanoma diagnosis and treatment.

This work has been funded by the Ministry of Economy and Competitiveness, the National Institute of Health Carlos III, the Melanoma Research Foundation, the American Cancer Society, the Fundación Mutua Madrileña and the Fundación "La Caixa".

Explore further: New insight into drug resistance in metastatic melanoma

More information: Alonso-Curbelo et al., RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endo- lysosomal Pathway, Cancer Cell (2014), dx.doi.org/10.1016/j.ccr.2014.04.030

Related Stories

New insight into drug resistance in metastatic melanoma

June 3, 2014
(Medical Xpress)—A study by scientists in Manchester has shown how melanoma drugs can cause the cancer to progress once a patient has stopped responding to treatment.

A method for the diagnosis and prognosis of melanoma, the most aggressive skin cancer, is patented

February 19, 2014
UPV/EHU researchers have developed a method for the diagnosis and prognosis of cutaneous melanoma, the type of skin cancer with the highest mortality rate.This method will help not only in the more effective early detection ...

Researchers discover how 'wriggling' skin cells go on the move

June 26, 2014
(Medical Xpress)—Scientists at the Cancer Research UK Manchester Institute, The University of Manchester and King's College London have discovered a new way that melanoma skin cancer cells can invade healthy tissue and ...

Team revises the role of cohesin in cancer

June 24, 2014
Massive sequencing of cancer genomes brings to light new genes every day that could be involved in the process of tumour formation. A good example of this is cohesin, a ring-shaped protein complex that embraces DNA to control ...

Higher risk of death from skin cancer among men living alone

April 1, 2014
There are differences in prognosis in cutaneous malignant melanoma depending on cohabitation status and gender, according to a new study published in the scientific periodical Journal of Clinical Oncology. Single men of all ...

Melanoma of the eye caused by two gene mutations

May 29, 2014
Researchers at the University of California, San Diego School of Medicine have identified a therapeutic target for treating the most common form of eye cancer in adults. They have also, in experiments with mice, been able ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.