Complex neural circuitry keeps you from biting your tongue

June 3, 2014, Duke University
In this blue cross-section of a mouse brain, two colors of fluorescent dye trace the premotor neurons that close the jaw and stick out the tongue, revealing how the brain is wired to coordinate these muscles during chewing, drinking, and vocalizing. Credit: Fan Wang Lab, Duke University

Eating, like breathing and sleeping, seems to be a rather basic biological task. Yet chewing requires a complex interplay between the tongue and jaw, with the tongue positioning food between the teeth and then moving out of the way every time the jaw clamps down to grind it up. If the act weren't coordinated precisely, the unlucky chewer would end up biting more tongue than burrito.

Duke University researchers have used a sophisticated tracing technique in mice to map the underlying brain circuitry that keeps mealtime relatively painless. The study, which appears June 3 in eLife, could lend insight into a variety of human behaviors, from nighttime teeth grinding to smiling or complex vocalizations.

"Chewing is an activity that you can consciously control, but if you stop paying attention these interconnected neurons in the brain actually do it all for you," said Edward Stanek IV, lead study author and graduate student at Duke University School of Medicine. "We were interested in understanding how this all works, and the first step was figuring out where these neurons reside."

Previous mapping attempts have produced a relatively blurry picture of this chewing control center. Researchers know that the movement of the muscles in the jaw and tongue are governed by special neurons called motoneurons and that these are in turn controlled by another set of neurons called premotor neurons. But the exact nature of these connections—which premotor neurons connect to which motoneurons—has not been defined.

Senior study author Fan Wang, Ph.D., associate professor of neurobiology and a member of the Duke Institute for Brain Sciences, has been mapping neural circuits in mice for many years. Under her guidance, Stanek used a special form of the rabies virus to trace the origins of chewing movements.

The rabies virus works naturally by jumping backwards across neurons until it has infected the entire brain of its victim. For this study, Stanek used a genetically disabled version of rabies that could only jump from the muscles to the motoneurons, and then back to the premotor neurons. The virus also contained a green or red fluorescent tag, which enabled the researchers to see where it landed after it was done jumping.

Stanek injected these fluorescently labeled viruses into two muscles, the tongue-protruding genioglossus muscle and the jaw-closing masseter muscle. He found that a group of premotor neurons simultaneously connect to the motoneurons that regulate jaw opening and those that trigger tongue protrusion. Similarly, he found another group that connects to both motoneurons that regulate jaw closing and those responsible for tongue retraction. The results suggest a simple method for coordinating the movement of the tongue and jaw that usually keeps the safe from injury.

"Using shared premotor to control multiple muscles may be a general feature of the motor system," said Stanek. "For other studies on the rest of the brain, it is important to keep in mind that can have effects in multiple downstream areas."

The researchers are interested in using their technique to jump even further back in the mouse brain, eventually mapping the circuitry all the way up to the cortex. But first they plan to delve deeper into the connections between the premotor and motoneurons.

"This is just a small step in understanding the control of these orofacial movements," Stanek said. "We only looked at two muscles and there are at least 10 other muscles active during chewing, drinking, and speech. There is still a lot of work to look at these other muscles, and only then can we get a complete picture of how these all work as a unit to coordinate this behavior," said Stanek.

Explore further: New brain circuit sheds light on development of voluntary movements

More information: "Monosynaptic Premotor Circuit Tracing Reveals Neural Substrates for Oro-motor Coordination," Edward Stanek IV, Steven Chang, Jun Takatoh, Bao-Xia Han, and Fan Wang. eLife, June 3, 2014. DOI: 10.7554/eLife.02511 http://elifesciences.org/content/early/2014/04/30/eLife.02511

Related Stories

New brain circuit sheds light on development of voluntary movements

January 23, 2013
All parents know the infant milestones: turning over, learning to crawl, standing, and taking that first unassisted step. Achieving each accomplishment presumably requires the formation of new connections among subsets of ...

A brain area responsible for grasping

April 4, 2014
(Medical Xpress)—The research group led by Silvia Arber at the Friedrich Miescher Institute for Biomedical Research and the Biozentrum of the University of Basel has shown that limb motor control is regulated by a selective ...

Study of zebrafish neurons may lead to understanding of birth defects like spina bifida

February 18, 2014
The zebrafish, a tropical freshwater fish similar to a minnow and native to the southeastern Himalayan region, is well established as a key tool for researchers studying human diseases, including brain disorders. Using zebrafish, ...

Researchers profile active genes in neurons based on connections

May 23, 2014
(Medical Xpress)—When it comes to the brain, wiring isn't everything. Although neurobiologists often talk in electrical metaphors, the reality is that the brain is not nearly as simple as a series of wires and circuits. ...

Glowing neurons reveal networked link between brain, whiskers

October 16, 2013
Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a ...

Recommended for you

When the eyes move, the eardrums move, too

January 23, 2018
Simply moving the eyes triggers the eardrums to move too, says a new study by Duke University neuroscientists.

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.