Fatal cellular malfunction identified in Huntington's disease

Fatal cellular malfunction identified in Huntington's disease
Hiroko Yano, PhD, right, led a team of researchers that learned how the fatal inherited disorder Huntington’s disease kills brain cells. Co-author Albert Kim also is pictured. Credit: Robert Boston

Researchers believe they have learned how mutations in the gene that causes Huntington's disease kill brain cells, a finding that could open new opportunities for treating the fatal disorder. Scientists first linked the gene to the inherited disease more than 20 years ago.

Huntington's disease affects five to seven people out of every 100,000. Symptoms, which typically begin in middle age, include involuntary jerking movements, disrupted coordination and cognitive problems such as dementia. Drugs cannot slow or stop the progressive decline caused by the disorder, which leaves patients unable to walk, talk or eat.

Lead author Hiroko Yano, PhD, of Washington University School of Medicine in St. Louis, found in mice and in mouse brain cell cultures that the disease impairs the transfer of proteins to energy-making factories inside . The factories, known as mitochondria, need these proteins to maintain their function. When disruption of the supply line disables the mitochondria, brain cells die.

"We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible," said Yano, assistant professor of neurological surgery, neurology and genetics. "We don't know if this will work in humans, but it's exciting to have a solid new lead on how this condition kills brain cells."

The findings are available online in Nature Neuroscience.

Huntington's disease is caused by a defect in the huntingtin gene, which makes the huntingtin . Life expectancy after initial onset is about 20 years.

Scientists have known for some time that the mutated form of the huntingtin protein impairs mitochondria and that this disruption kills brain cells. But they have had difficulty understanding specifically how the gene harms the mitochondria.

For the new study, Yano and collaborators at the University of Pittsburgh worked with mice that were genetically modified to simulate the early stages of the disorder.

Yano and her colleagues found that the mutated huntingtin protein binds to a group of proteins called TIM23. This normally helps transfer essential proteins and other supplies to the mitochondria. The researchers discovered that the mutated huntingtin protein impairs that process.

The problem seems to be specific to brain cells early in the disease. At the same point in the disease process, the scientists found no evidence of impairment in , which also produce the mutated .

The researchers speculated that brain cells might be particularly reliant on their mitochondria to power the production and recycling of the chemical signals they use to transmit information. This reliance could make the cells vulnerable to disruption of the mitochondria.

Other neurodegenerative conditions, including Alzheimer's disease and , also known as Lou Gehrig's , have been linked to problems with . Scientists may be able to build upon these new findings to better understand these disorders.


Explore further

Study shows for first time how Huntington's disease protein could cause death of neurons

More information: Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S, Carlisle DL, Ferrante RJ, Kim AH, Friedlander RM. Inhibition of mitochondrial protein import by mutant huntingtin. Nature Neuroscience, published online May 18, 2014.
Provided by Washington University School of Medicine
Citation: Fatal cellular malfunction identified in Huntington's disease (2014, June 23) retrieved 22 February 2019 from https://medicalxpress.com/news/2014-06-fatal-cellular-malfunction-huntington-disease.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more