New way to control genetic material altered in cancer discovered

June 5, 2014
Discovered a new way to control genetic material altered in cancer
This image shows colon cancer cells where the ultra-conservated RNA identified appears in red. Credit: IDIBELL

When we talk about genetic material, we are usually referring to the DNA (deoxyribonucleic acid) that we inherit from our parents. This DNA is the factory where is built a similar molecule called RNA (ribonucleic acid) which produces our proteins, such as hemoglobin or insulin , allowing the lives of our cells. But there is a special group called non-coding RNA that has a more enigmatic function.

The best known is microRNAs, tiny molecules that are responsible for turning on or off our genome like an electrical current switch. Today, an article published in the prestigious journal Molecular Cell by Manel Esteller, Director of Epigenetics and Cancer Biology Program of the Bellvitge Biomedical Research Institute (IDIBELL), ICREA researcher and Professor of Genetics at the University of Barcelona, provides a twist over this mystery.

Research shows that there is a second type of non-coding RNA, called ultra-conserved RNA that acts as switches switch, ie , controls the activity of microRNAs.

"Who watches the watchers? This was one of the issues that we set at the beginning of the research" says Esteller. "We have found that special molecules called ultra-conserved RNA were not produced in human tumors and this contributed to their growth, but we knew nothing about this mechanism. It should be an important role because these molecules are highly conserved in evolution and there is no variation from chickens to humans. We realized ultraconservated RNAs attached to the other family of non-coding RNAs , microRNAs, as a magnet and prevented its function. That is, they are the police internal affairs officers who supervise the battle soldiers in healthy cells . If a cell fails to produce the ultraconservated RNA, microRNA gets altered and hundreds of genes that should maintain cellular balance does and thus contributes to the formation of human tumors, " concludes Manel Esteller.

The results obtained by the group Esteller in Molecular Cell article are very important for understanding the function of the dark genome. Deciphering encrypted codes of cellular activity in these sequences of our DNA represents one of the most exciting challenges of modern biology. This cutting edge research is beginning to bear its first fruits in the field of medical research such as that described ultraconservated RNA is related with cancer development.

Explore further: 'Dark genome' is involved in Rett Syndrome

Related Stories

'Dark genome' is involved in Rett Syndrome

May 2, 2013
Researchers at the Epigenetics and Cancer Biology Program at IDIBELL led by Manel Esteller, ICREA researcher and professor of genetics at the University of Barcelona, have described alterations in noncoding long chain RNA ...

Discovery of a mechanism that makes tumor cells sugar addicted

April 4, 2014
For almost a hundred years ago is known that cancer cells feel a special appetite for a type of sugar called glucose. The tumor uses this molecule is like the gasoline which depends a sports car to burn faster and grows and ...

Identified epigenetic factors associated with an increased risk of developing cancer

April 10, 2014
In 10% of human tumors there is a family history of hereditary disease associated with mutations in identified genes. The best examples are the cases of polyps in the large intestine associated with the APC gene and breast ...

Why tumors become resistant to chemotherapy?

December 2, 2013
A common observation in oncology is the phenomenon that a patient with a tumor receives a drug and responds very well, but after a few months the cancer comes back and is now resistant to previously administered chemotherapy. ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.