Researchers home in on way to predict aggressiveness of oral cancer

June 26, 2014 by Julia Evangelou Strait, Washington University School of Medicine in St. Louis
Researchers home in on way to predict aggressiveness of oral cancer
Ravindra Uppaluri (right) led a team that developed a preliminary diagnostic test that identifies aggressive oral tumors. Michael D. Onken (left) and Ashley E. Winkler are co-authors of the paper. Credit: Robert Boston

(Medical Xpress)—Studying mouth cancer in mice, researchers have found a way to predict the aggressiveness of similar tumors in people, an early step toward a diagnostic test that could guide treatment, according to researchers at Washington University School of Medicine in St. Louis.

"All patients with advanced get similar treatments," said Ravindra Uppaluri, MD, PhD, associate professor of otolaryngology. "We have patients who do well on standard combinations of surgery, radiation and chemotherapy, and patients who don't do so well. We're interested in finding out why."

Reporting in Clinical Cancer Research, the investigators found a consistent pattern of gene expression associated with spreading in mice. Analyzing genetic data from human samples, they also found this gene signature in people with aggressive metastatic tumors.

"We didn't automatically assume this mouse model would be relevant to human oral ," said Uppaluri, who performs head and neck surgeries at Barnes-Jewish Hospital. "But it turns out to be highly reflective of the disease in people."

Rather than use genetic methods to induce tumors in the mice, the research team repeatedly applied a known carcinogen, in much the same way humans develop cancer of the mouth.

"Patients often have a history of tobacco and alcohol use, which drive the development of these tumors," Uppaluri said. "We felt that exposing the mice to a carcinogen would be more likely to produce similar kinds of tumors."

The researchers, including first author Michael D. Onken, PhD, research assistant professor of cell biology and physiology, showed that this exposure sometimes produced tumors in the mice that did not spread, but other times resulted in aggressive metastatic tumors, similar to the variety of tumors seen in people. Uppaluri's team then collaborated with Elaine Mardis, PhD, co-director of The Genome Institute at Washington University, to find out whether the mouse and human tumors also were genetically similar. They compared their mouse sequences to human data sets from The Cancer Genome Atlas (TCGA).

"When we sequenced these tumors, we found that a lot of the genetic mutations present in the mouse tumors also were found in human head and neck cancers," Uppaluri said.

Further analysis identified a common signature in the expression of about 120 genes that was associated with the more , whether in mice or people. The researchers confirmed this signature using data collected from 324 human patients. Subsequently, using oral cancer samples from patients treated at Washington University, they developed a proof of concept test from their signature that identified the aggressive tumors with about 93 percent accuracy.

Working with the Washington University Office of Technology Management, Uppaluri has a patent pending on this technology and recently received funding from the Siteman Cancer Frontier Fund to develop a laboratory test that predicts aggressive disease and would be easily available for any patient diagnosed with head and neck cancer.

"These kinds of tests are available for other types of cancer, most notably breast cancer," he said. "They are transformative genetic tests that can alter the clinical management of patients, tailoring therapies especially for them. It's our goal to develop something like that for head and ."

Explore further: Recurrent head and neck tumors have gene mutations that could be vulnerable to cancer drug

More information: Onken MD, Winkler AE, Kanchi KL, Chalivendra V, Law JH, Rickert CG, Kallogjeri D, Judd NP, Dunn GP, Piccirillo JF, Lewis Jr. JS, Mardis ER, Uppaluri R. "A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease." Clinical Cancer Research. June 1, 2014.

Related Stories

Recurrent head and neck tumors have gene mutations that could be vulnerable to cancer drug

April 4, 2014
An examination of the genetic landscape of head and neck cancers indicates that while metastatic and primary tumor cells share similar mutations, recurrent disease is associated with gene alterations that could be exquisitely ...

Number of cancer stem cells might not predict outcome in HPV-related oral cancers

January 22, 2014
(Medical Xpress)—New research from The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that it may be the quality ...

A new tool to confront lung cancer

June 19, 2014
Only 15% of patients with squamous cell lung cancer – the second most common lung cancer – survive five years past diagnosis. Little is understood about how the deadly disease arises, preventing development of targeted ...

Genetic errors identified in 12 major cancer types

October 16, 2013
Examining 12 major types of cancer, scientists at Washington University School of Medicine in St. Louis have identified 127 repeatedly mutated genes that appear to drive the development and progression of a range of tumors ...

Virus kills triple negative breast cancer cells, tumor cells in mice

June 24, 2014
A virus not known to cause disease kills triple-negative breast cancer cells and killed tumors grown from these cells in mice, according to Penn State College of Medicine researchers. Understanding how the virus kills cancer ...

Some pancreatic cancer treatments may be going after the wrong targets, study finds

May 22, 2014
New research represents a significant change in the understanding of how pancreatic cancer grows – and how it might be defeated.

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.