Fighting resistance to antimalarial drug

June 6, 2014, Youris.com
Fighting resistance to antimalarial drug

When it comes to the emergence of antimalarial drug resistance, it's not a question of 'if' but 'when'. In order to keep up with the quickly evolving Plasmodium parasite - the cause of malaria - new ways to treat and control the disease must be found. But many of today's antimalarial drugs, such as artemisinin, were developed without a great understanding of how the drug actually killed the parasite.

Now the EU-funded project MALSIG, which ended in 2012, may have provided important insight into the parasite's biology.  Kinases are vital enzymes involved in signalling pathways in all cells. But project researchers gained a good understanding of which specific kinases play key roles in the of the parasite. Project coordinatorGordon Langsley, a researcher at the Institute Cochin in Paris, France, believes targeting kinases may be one of the most promising routes to developing new

Why kinases? "Because they are drug targets in cancer and many other diseases," Langsley tells youris.com. "Some of the early cancer drug leads were not very efficacious against the human enzymes. But the idea is that they could work against the parasite enzymes." Since developing new antimalarial drugs is not at the top of the list for most pharmaceutical companies, 'piggybacking' on the drug development for other diseases like cancer is an especially valuable approach in malaria research, he adds. 

Even though the project brought some advances, Langsley says there's still a vast amount of work to do to identify the proteins that kinases phosphorylate, or activate, in the cell. Once phosphorylated, these proteins go on to perform vital cellular functions, the arrest of which can lead to cell death. Understanding the ins and outs of these protein-kinase interactions will give researchers the ability to develop new drugs that cause less side effects in humans. But also it could enable scientists to find a common thread among all the Plasmodium variants around the world. Such knowledge could lead to an effective vaccine.

One expert appreciates the magnitude of the problem and the importance of the project. "This is complex, big biology. Whole genome wide and proteome wide approaches will be required to understand the [kinase] pathways. And those kinds of technologies are only just emerging," says Julian Rayner, a senior group leader at the Wellcome Trust Sanger Institute near Cambridge, in the UK. "So I don't think it's a surprise that, while the project has been very successful in identifying targets, there is still more work to do."

Rayner believes two issues usually hinder malaria research – funding and the complexity and uniqueness of the parasite. "There's no question that [] receives less attention than other diseases that have a more economic upside," he notes. The Plasmodium parasite is also, like humans, a eukaryotic organism. This means that its cellular biology is more complex than that found in other organisms like bacteria or viruses. In addition, its genome is quite unique, as many of its genes are not clearly related to others in eukaryotes. These characteristics make developing techniques to study Plasmodium difficult and that's why collaborations like this project are important, according to Rayner. He also tells youris.com: "It's not always obvious which way is the best way forward, so we have to share approaches and knowledge."

But another expert is concerned that there is no golden ticket to solving this global health issue. Targeting kinases "is a very valuable approach, but we should target as many different approaches as possible if we really want to tackle the very complicated life cycle of and disease caused by this parasite," says Maria Mota, a researcher at theUniversity of Lisbon's Institute for Molecular Medicine in Portugal. 

Explore further: Focus on biological signalling to defeat malaria

Related Stories

Focus on biological signalling to defeat malaria

June 6, 2014
Millions of people die each year of malaria – a disease transmitted by the Anopheles mosquito. There are major barriers in vaccine development as well as increased resistance to currently available therapies. New biological ...

Studying the metabolism of the malaria-causing parasite Plasmodium falciparum

March 19, 2014
(Medical Xpress)—Fighting malaria in today's world will require a new, targeted approach, and Virginia Tech researchers are out for blood.

Scientists generate 3-D structure for the malaria parasite genome

April 4, 2014
A research team led by a cell biologist at the University of California, Riverside has generated a 3D model of the human malaria parasite genome at three different stages in the parasite's life cycle—the first time such ...

Comparing antimalarial drugs and their effects over the Plasmodium lifecycle

February 21, 2012
In this week's PLoS Medicine, Michael Delves of Imperial College London, UK and colleagues compare the activity of 50 current and experimental antimalarials against liver, sexual blood, and mosquito stages of selected human ...

Recommended for you

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

A new class of drug to treat herpes simplex virus-1 infection

February 14, 2018
For patients with the herpes simplex-1 virus (HSV-1), there are just a handful of drugs available to treat the painful condition that can affect the eyes, mouth and genitals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.