Picking the right virus candidate for gene therapy

June 24, 2014
Picking the right virus candidate for gene therapy

Viruses often get bad press. Likened to Trojan horses they are often associated with disease. But, it is precisely because of their infectious nature that they can potentially be used as gene vectors - which are vehicles loaded with good copies of malfunctioning genes - and delivered to cells. This is difficult but even more so is penetrating the fortress of the brain. But this is exactly what gene therapy research into central nervous system diseases aims to do. Success may depend on the choice of the Trojan horse, its size, shape, and ability to move beyond the place where it has been delivered. There is a lot of expectation that such vectors will one day be injected directly into the brain to treat several diseases. But researchers are still struggling to find the right candidates.

Now, the EU-funded project BrainCAV, completed in 2013, may have identified a viral vector that might be very good for treating a variety of different pathologies that affect the brain. Research initially focused on with canine adenovirus-2 (CAV-2), a virus that infects the dog respiratory tract. But almost by chance project researchers found out that this virus is very good at infecting the central of people. "We serendipitously found that CAV-2 vectors were very good at infecting neurons in the ," says project coordinator Eric Kremer, director of research at the CNRS Institute of Molecular Genetics at Montpellier, in France.

In general, several types of viruses could potentially be vectors for gene therapy in brain diseases. These include adenoviruses, adeno-associated viruses and lentivirus. Each has its own advantages and drawbacks. Being a virus that normally does not infect humans, CAV-2 is not knocked down by our immune system. What is more, it also was discovered that CAV-2 preferentially infects neurons, not other types of brain cells. And that it has the ability to travel along the axons, the projections of neurons. So it can reach areas of the brain quite distant from the point of injection. All together, these characteristics made it an interesting candidate for gene therapy of neurodegenerative diseases.

To obtain a proof of principle that it was possible to create a therapeutic vector from the virus, scientists involved in the project tested this approach in an extremely rare disease, called mucopolysaccaridosis type VII, also known as Sly disease. The researchers inserted a functional copy of the gene affected in the disease into the virus. They then tested the vector in mice and dogs with the pathology. "We cleared the brain of all the animals from the neuropathology, and in the mice we also succeeded in preventing or reversing its cognitive effects," Kremer tells youris.com.

Project researchers also generated a primate model of Parkinson's disease. They delivered the CAV-2 vector loaded with a gene that causes a familiar form of the disease into the brain of monkeys. The reasoning is that if this works, the inverse process of loading the same vector with therapeutic genes will become viable.

But there are challenges regarding the production of vectors - should they demonstrate their efficacy as a treatment. A large-scale vector production according to the so-called Good Manufacturing Practices (GMP) rules, to make it fit to be used as a drug, is costly and technically challenging. The project also tackled this aspect. So, in the next few years, researchers hope to be able to produce a gene therapy for Sly syndrome. If it works, it could pave the way for testing the vector in other kind of disorders, including Parkinson's disease.

Currently, a popular approach in gene therapy for is with some adeno-associated viruses. A few years ago, it was discovered that they can cross the when injected intravenously. And that they achieve very widespread gene delivery into the brain. When compared against this approach, one expert believes the project's CAV-2 approach could have a possible advantage in terms of safety. One possible good trait of vectors such as CAV-2 is that they do not integrate into cells DNA. "For this reason they are considered safer than integrating lentiviral vectors," says Angela Gritti, group leader of research on gene and cells therapy for lysosomal storage diseases at the San Raffaele Hospital in Milan, Italy. But they might not have widespread applicability in the brain. "On the other hand, they might be less suitable for global diseases, where the genetic error affects each and every cell," she tells youris.com.

Another expert sees an advantage of CAV-2 vector over other ones in its ability to carry a larger amount of genetic material. "These [other] vectors can carry only around five thousand base pairs of DNA. So they cannot deliver big genes," says Simon Waddington, who leads the group at University College London, in the UK. "In contrast, CAV vectors have a much larger capacity, "he tells youris.com, "And this means that they can be used to deliver any gene."

Explore further: Two approaches to treat Lysosomal Storage Diseases

Related Stories

Two approaches to treat Lysosomal Storage Diseases

April 15, 2014
Enzyme therapy proves effective in treating LSDs, whilst gene therapy is an upcoming contender.

Gene therapy for lysosomal storage disease shown to be safe and well tolerated

March 11, 2014
Several young children suffering from a severe degenerative genetic disease received injections of therapeutic genes packaged within a noninfectious viral delivery vector. Safety, tolerability, and efficacy results from this ...

Mouse model could help identify viral vectors that may cause tumors

October 26, 2012
Investigators at Nationwide Children's Hospital have identified a mouse model that could help evaluate the risk that viral vectors used in gene therapy might promote tumor formation as a side-effect. The study appears in ...

Redesigned protein opens door for safer gene therapy

November 13, 2013
A fusion protein engineered by researchers at KU Leuven combining proteins active in HIV and Moloney murine leukaemia virus (MLV) replication may lead to safer, more effective retroviral gene therapy.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.