Researchers find mechanism that clears excess of protein linked with Type 2 diabetes

July 19, 2014, University of California, Los Angeles

People with Type 2 diabetes have an excess of a protein called islet amyloid polypeptide, or IAPP, and the accumulation of this protein is linked to the loss of insulin-producing pancreatic beta cells.

What causes this accumulation of IAPP in pancreatic beta cells of people with diabetes has remained a mystery. But a team of researchers from the Larry L. Hillblom Islet Research Center led by Dr. Peter Butler, professor of medicine at UCLA, may have found an answer in autophagy, a process that clears damaged and toxic proteins from cell.

In a study published online July 18 in the peer-reviewed Journal of Clinical Investigation, the UCLA researchers suggest that, in people who do not have Type 2 diabetes, autophagy prevents the accumulation of toxic forms of IAPP. In people with Type 2 diabetes, the process appears to not work properly, contributing to the destruction of beta cells. As the body's insulin producers, beta cells play a key role in maintaining healthy blood sugar levels.

"Only a few previous studies have reported that autophagy is important for beta cell function and survival," said Safia Costes, a research scientist at the Hillblom Center and the study's co-first author. "Those studies, however, were not conducted to address the role of this process in the regulation of the amyloidogenic protein, which is an important contributor to Type 2 diabetes."

Investigators found that autophagy plays a role in clearing IAPP from pancreatic beta cells using three experimental models: pancreatic beta cells, isolated pancreatic islets from mice that express the human form of IAPP, and human islets.

To corroborate the findings, the researchers also developed a novel mouse model that was deficient for autophagy specifically in beta cells with expression of the human form of islet amyloid polypeptide. They found that mice that had beta cells in which autophagy didn't work properly showed elevated levels of toxic IAPP, which led to the death of the beta cells. As a result, those mice developed diabetes.

"The goal of our work is to understand the cellular mechanisms responsible for beta cell destruction so that we can identify the best targets for beta cell protection," Costes said. "This would aid the development of the next generation of treatments as well as combination therapies for Type 2 diabetes."

The study also confirmed similarities between Type 2 diabetes and Alzheimer's and other neurodegenerative diseases that are marked by an accumulation of toxic forms of amyloid proteins, she said. "This demonstrates the importance of autophagy in clearing out these harmful proteins to prevent both Type 2 diabetes and Alzheimer's."

Explore further: Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

Related Stories

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Researchers find new pathway connected to type 2 diabetes

March 19, 2014
Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Cell study offers more diabetic patients chance of transplant

August 29, 2013
Diabetic patients could benefit from a breakthrough that enables scientists to take cells from the pancreas and change their function to produce insulin.

The benefits of a spotless mind

November 15, 2013
Alzheimer's disease is an age-related memory disorder characterized by the accumulation of clumps of the toxic amyloid-β (Aβ) protein fragment in the extracellular space around neurons in the brain. Drugs that help to 'clean ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.