Researchers discover how dengue suppresses the human immune system

July 16, 2014

Scientists have discovered a new pathway the dengue virus takes to suppress the human immune system. This new knowledge deepens our understanding of the virus and could contribute to the development of more effective therapeutics.

For years, the conventional approach to target the dengue virus was through vector control, which was regarded to be the most effective method. This is because the mechanics of the virus have been elusive, which in turn hampered the development of effective treatments and vaccines.

Fortunately a new study, published in the prestigious journal PLOS Pathogens, has given us fresh insight into the virus. Researchers from the Program in Emerging Infectious Diseases (EID) at Duke-NUS Graduate Medical School Singapore (Duke-NUS) have discovered a new way that dengue virus-2 (DENV-2) uses to evade the human defense system. Typically, when a virus enters the body and infects cells, it induces the production and release of interferons (IFNs), which are proteins that raise the bodies' anti-viral defense mechanisms.

The dengue virus enters the cell and produces large quantities of a non-coding, highly-structured viral RNA termed sfRNA, which is part of the genetic material of the dengue virus. The team found that sfRNA attaches itself to G3BP1, G3BP2 and CAPRIN1, proteins in the cell that typically help in producing antiviral proteins in response to IFNs. Because of this interaction, the cell is unable to mount its antiviral defenses and protect itself against .

"These findings were surprising because in 30 years of RNA and dengue related research this new mechanism was never discovered," explained senior author Professor Mariano Garcia-Blanco from EID.

"We not only found a new way in which the pathogen (dengue virus) interferes with the host response () we also uncovered the first mechanistic insight into how this non-coding RNA works. This discovery opens the door to explore therapeutics through this channel."

These findings highlight new steps that regulate our immune response, and in the case of dengue, how the virus has learnt how to avoid these defenses. It also highlights the differences between the four dengue strains and how more research is needed to understand this highly complex virus.

"The dengue virus employs multiple strategies to evade our immune responses. These strategies provide the virus with redundancies so that if one approach fails, it has others to provide it with the necessary means to thrive," commented Associate Professor Eng Eong Ooi, Deputy Director of EID.

"Prof Garcia-Blanco's lab describes a novel way in which dengue virus is able to avoid being killed by our antiviral response. It produces fragments of its own genome to act like a sponge to soak up those factors needed to produce the virus killing machinery. This work is an important contribution to our overall understanding of the evasive strategies employed by , which is important for devising new and effective methods for treating dengue patients."

Explore further: How the Dengue virus circulates in the wild

Related Stories

How the Dengue virus circulates in the wild

February 20, 2014

Science has come a long way in containing infectious diseases over the past five decades. Despite this progress, the incidence of dengue fever has increased thirty-fold, with 390 million people infected annually worldwide.

Researchers discover target for treating dengue fever

April 17, 2014

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Recommended for you

Listeria may be serious miscarriage threat early in pregnancy

February 21, 2017

Listeria, a common food-borne bacterium, may pose a greater risk of miscarriage in the early stages of pregnancy than appreciated, according to researchers at the University of Wisconsin-Madison School of Veterinary Medicine ...

Ebola linked to habitat destruction

February 20, 2017

A Massey University veterinary scientist has co-authored research suggesting that Ebola virus emergence is linked to the clearing of animal habitat through deforestation in West and Central Africa.

New study determines how long Zika remains in body fluids

February 20, 2017

A study published in the New England Journal of Medicine provides evidence that the Zika virus particles remain longer in blood than in urine and some other body fluids. This information suggests that blood serum may be the ...

Researcher helps stem the spread of superbugs

February 20, 2017

Katherine Baker feels vindicated. She and other microbiologists have been warning for years that anti-bacterial soaps containing triclosan are bad for the environment, harmful for health, and do nothing to prevent disease.

Scientists uncover how Zika virus causes microcephaly

February 17, 2017

A multidisciplinary team from The University of Texas Medical Branch at Galveston has uncovered the mechanisms that the Zika virus uses to alter brain development. These findings are detailed in Stem Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.