Diabetes discovery illuminates path to new drugs

July 25, 2014 by Alvin Powell, Harvard University
Searching for “broken genes” — those whose protective effects come from shutting off and ceasing to function — gives drug companies an important leg up, explained David Altshuler, professor of genetics and medicine at Harvard Medical School. Creating a drug to stop a gene from working is less complicated than creating one to turn a gene on, make it go faster, or change how it functions. During the Broad Institute's summer lecture series, Altshuler was explaining the recent discovery of a genetic mutation that protects against type 2 diabetes. Credit: Rose Lincoln/Harvard Staff Photographer

To David Altshuler, the recent discovery of a genetic mutation that protects against type 2 diabetes offers hope in fighting more than just diabetes.

It also illustrates how using the tools of genetics to hunt for "broken genes" can aid drug discovery, a process that itself is broken, Altshuler said, with new finds scarce despite billions spent on research.

"Almost everything we put into patients fails," said Altshuler, a Harvard Medical School genetics professor. "There's something wrong with what we're doing."

The "broken gene" procedure involves screening large segments of the population for people who should develop a particular disease, but don't. Once found, researchers screen their genomes, comparing the results with the rest of the population, singling out genetic differences that provide the protective effects, and looking specifically for genes that are unexpectedly shut off.

Genes involved in disease, of course, can operate in different ways. In addition to being shut off entirely, they can turn on at the wrong time, shut off at the wrong time, or stay on too long or not long enough.

Altshuler, who is also a researcher at both the Broad Institute of MIT and Harvard and Massachusetts General Hospital, spoke Wednesday at the Broad as part of a summer lecture series. Searching for "broken genes"—those whose protective effects come from shutting off and ceasing to function—gives drug companies an important leg up, he said. Creating a drug to stop a gene from working is less complicated than creating one to turn a gene on, make it go faster, or change how it functions.

The find, announced in March, was conducted by an international consortium led by Altshuler. Researchers screened 150,000 patients and identified several thousand who had risk factors for diabetes—including old age and obesity—and yet hadn't developed the disease. In those people, researchers examined a suite of genes known to be associated with diabetes, finding a mutation in one, called SLC30A8, that stopped it from functioning and that was responsible for the protective effects. Further work showed other mutations of the same gene that, if one copy was inherited, cut the risk of developing 65 percent.

The potential boost from "broken genes" is badly needed, Altshuler said.

Drug development has been bumping along at a discouragingly low pace for decades, he said. Advances in laboratory techniques have greatly reduced the toxicity that caused most drug candidates to fail in past decades, but the number of drugs that successfully make it through clinical trials hasn't budged.

And the major reason is that the vast majority of them just don't work, Altshuler said. Despite better techniques and the development of animal models that supposedly mimic human biology, more than 95 percent of lab-effective candidates are ineffective when attempted in humans, he said.

We still don't understand human biology well enough to fully understand how a drug will work in people, Altshuler said, or even to pick up key biological differences between humans and the lab animals.

In the past, Altshuler said, successful drugs were found by investigating "experiments of nature"—observations of disease outcomes that differed in different populations and that could be traced to a particular physiological trait. For example, Altshuler said, the use of cortisol to treat rheumatoid arthritis came from observations that the condition would improve in patients who developed Cushings' syndrome, marked by too much cortisol, and get worse in those with Addison's disease, marked by too little.

Those kinds of natural experiments not only point the way toward treatment, they provide scientists with assurance that the treatment will be safe, and will work. The tools of genetics have the potential to uncover the same sort of natural experiments, Altshuler said, and provide a pathway to more effective drug discovery.

"We can recognize when a DNA variation breaks a gene and stops its functioning cold," Altshuler said.

Explore further: Study pinpoints protective mutations for type 2 diabetes

Related Stories

Study pinpoints protective mutations for type 2 diabetes

March 2, 2014
An international team led by researchers at the Broad Institute and Massachusetts General Hospital (MGH) has identified mutations in a gene that can reduce the risk of developing type 2 diabetes, even in people who have risk ...

Research unearths genetic risk factor for type 2 diabetes in Latin American populations

June 10, 2014
In the largest study of its kind published to date, an international team of researchers in Mexico and the United States has discovered a strong genetic risk factor for type 2 diabetes that primarily affects Latin American ...

Raising HDL not a sure route to countering heart disease

May 16, 2012
A new paper published online in The Lancet challenges the assumption that raising a person's HDL — the so-called "good cholesterol" — will necessarily lower the risk of a heart attack. The new research underscores ...

Gene function identified in type 1 diabetes progression

July 23, 2014
IDENTIFYING a genetic weakness that causes type 1 diabetes in children has opened the way for development of a treatment capable of preventing the disease.

Study reveals new genetic risk factor for type 2 diabetes

December 25, 2013
An international team of researchers in Mexico and the United States has uncovered a new genetic clue that contributes to an increased risk of developing type 2 diabetes, particularly the elevated risk among Mexican and other ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.