Same genes drive maths and reading ability

July 8, 2014
Credit: Marina Shemesh/public domain

Around half of the genes that influence how well a child can read also play a role in their mathematics ability, say scientists from UCL, the University of Oxford and King's College London who led a study into the genetic basis of cognitive traits.

While mathematics and reading ability are known to run in families, the complex system of genes affecting these traits is largely unknown. The finding deepens scientists' understanding of how nature and nurture interact, highlighting the important role that a child's learning environment may have on the development of reading and mathematics skills, and the complex, shared of these cognitive traits.

The collaborative study, published today in Nature Communications as part of the Wellcome Trust Case-Control Consortium, used data from the Twins Early Development Study (TEDS) to analyse the influence of genetics on the reading and mathematics performance of 12-year-old children from nearly 2,800 British families.

Twins and unrelated children were tested for reading comprehension and fluency, and answered mathematics questions based on the UK national curriculum. The information collected from these tests was combined with DNA data, showing a substantial overlap in the genetic variants that influence and reading.

First author Dr Oliver Davis (UCL Genetics), said: "We looked at this question in two ways, by comparing the similarity of thousands of twins, and by measuring millions of tiny differences in their DNA. Both analyses show that similar collections of subtle DNA differences are important for reading and maths. However, it's also clear just how important our life experience is in making us better at one or the other. It's this complex interplay of nature and nurture as we grow up that shapes who we are."

Professor Robert Plomin (King's College London), who leads the TEDS study, and one of the senior authors, said: "This is the first time we estimate genetic influence on learning ability using DNA alone. The study does not point to specific genes linked to literacy or numeracy, but rather suggests that genetic influence on complex traits, like learning abilities, and common disorders, like learning disabilities, is caused by many genes of very small effect size. The study also confirms findings from previous twin studies that genetic differences among children account for most of the differences between children in how easily they learn to read and to do maths. Children differ genetically in how easy or difficult they find learning, and we need to recognise, and respect, these individual differences. Finding such strong does not mean that there is nothing we can do if a child finds learning difficult—heritability does not imply that anything is set in stone – it just means it may take more effort from parents, schools and teachers to bring the child up to speed."

Dr Chris Spencer (Oxford University), lead author said: "We're moving into a world where analysing millions of DNA changes, in thousands of individuals, is a routine tool in helping scientists to understand aspects of human biology. This study used the technique to help investigate the overlap in the genetic component of reading and maths ability in children. Interestingly, the same method can be applied to pretty much any human trait, for example to identify new links between diseases and disorders, or the way in which people respond to treatments."

Explore further: Differences in educational achievement owe more to genetics than environment

Related Stories

Differences in educational achievement owe more to genetics than environment

December 11, 2013
The degree to which students' exam scores differ owes more to their genes than to their teachers, schools or family environments, according to new research from King's College London published today in PLOS ONE.

Genetics explain why some boys and girls are bigger than others

April 23, 2014
The influence of genetic factors on differences between children's Body Mass Index (BMI) increases from 43% at age 4 to 82% at age 10, reports a new study by researchers at UCL and King's College London.

Literacy depends on nurture, not nature, education professor says

November 14, 2013
A University at Buffalo education professor has sided with the environment in the timeless "nurture vs. nature" debate after his research found that a child's ability to read depends mostly on where that child is born, rather ...

Rosin up that bow, maestro: And thank your genes

June 26, 2014
Mom or dad may have driven you to cello rehearsal all those years, but you can also thank your genes for pushing you to practice, according to new research led by a Michigan State University professor.

Who's afraid of math? Genetics plays a role, but researchers say environment still key

March 17, 2014
A new study of math anxiety shows how some people may be at greater risk to fear math not only because of negative experiences, but also because of genetic risks related to both general anxiety and math skills.

Over range of ADHD behavior, genes major force on reading achievement, environment on math

April 22, 2011
Humans are not born as blank slates for nature to write on. Neither are they behaving on genes alone.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.