Glucose 'control switch' in the brain key to both types of diabetes

July 28, 2014
Glucose 'control switch' in the brain key to both types of diabetes
Credit: Yale University

Researchers at Yale School of Medicine have pinpointed a mechanism in part of the brain that is key to sensing glucose levels in the blood, linking it to both type 1 and type 2 diabetes. The findings are published in the July 28 issue of Proceedings of the National Academies of Sciences.

"We've discovered that the prolyl endopeptidase enzyme—located in a part of the hypothalamus known as the ventromedial nucleus—sets a series of steps in motion that control glucose levels in the blood," said lead author Sabrina Diano, professor in the Departments of Obstetrics, Gynecology & Reproductive Sciences, Comparative Medicine, and Neurobiology at Yale School of Medicine. "Our findings could eventually lead to new treatments for diabetes."

The ventromedial nucleus contains cells that are glucose sensors. To understand the role of prolyl endopeptidase in this part of the brain, the team used mice that were genetically engineered with low levels of this enzyme. They found that in absence of this enzyme, mice had high levels of glucose in the blood and became diabetic.

Diano and her team discovered that this enzyme is important because it makes the in this part of the brain sensitive to glucose. The neurons sense the increase in glucose levels and then tell the pancreas to release insulin, which is the hormone that maintains a steady level of glucose in the blood, preventing diabetes.

"Because of the low levels of endopeptidase, the neurons were no longer sensitive to increased glucose levels and could not control the release of insulin from the pancreas, and the mice developed diabetes." said Diano, who is also a member of the Yale Program in Integrative Cell Signaling and Neurobiology of Metabolism.

Diano said the next step in this research is to identify the targets of this enzyme by understanding how the makes the neurons sense changes in . "If we succeed in doing this, we could be able to regulate the secretion of insulin, and be able to prevent and treat ," she said.

Explore further: Modified iPhone shows promise against type 1 diabetes

More information: PNAS, DOI: 10.1073/pnas.1406000111

Related Stories

Modified iPhone shows promise against type 1 diabetes

June 16, 2014
A device that uses a modified iPhone to help regulate the blood sugar of people with type 1 diabetes appears to work better than an insulin pump, researchers say.

Novel drug target linked to insulin secretion and type 2 diabetes treatment

May 26, 2014
A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. ...

Loss of function of a single gene linked to diabetes in mice

January 4, 2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Brain may play key role in blood sugar metabolism and development of diabetes

November 6, 2013
A growing body of evidence suggests that the brain plays a key role in glucose regulation and the development of type 2 diabetes, researchers write in the Nov. 7 issue of the journal Nature. If the hypothesis is correct, ...

One injection stops type 2 diabetes in its tracks in mice without side effects

July 16, 2014
In mice with diet-induced diabetes—the equivalent of type 2 diabetes in humans—a single injection of the protein FGF1 is enough to restore blood sugar levels to a healthy range for more than two days. The discovery by ...

Scientists find missing link in regulation of glucose

December 22, 2011
(Medical Xpress) -- A team led by USC neuroscientist Alan Watts identified for the first time a biochemical signal that helps regulate the amount of glucose in the blood.

Recommended for you

New understanding of how muscles work

August 23, 2017
Muscle malfunctions may be as simple as a slight strain after exercise or as serious as heart failure and muscular dystrophy. A new technique developed at McGill now makes it possible to look much more closely at how sarcomeres, ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.