Kids with autism and sensory processing disorders show differences in brain wiring

July 30, 2014, University of California, San Francisco

Researchers at UC San Francisco have found that children with sensory processing disorders have decreased structural brain connections in specific sensory regions different than those in autism, further establishing SPD as a clinically important neurodevelopmental disorder.

The research, published in the journal PLOS ONE, is the first study to compare structural connectivity in the brains of children with an diagnosis versus those with an SPD diagnosis, and with a group of typically developing boys. This new research follows UC San Francisco's groundbreaking study published in 2013 that was the first to find that boys affected with SPD have quantifiable regional differences in brain structure when compared to typically developing boys. This work showed a biological basis for the disease but prompted the question of how these differences compared with other neurodevelopmental disorders.

"With more than 1 percent of children in the U.S. diagnosed with an , and reports of 5 to 16 percent of children having difficulties, it's essential we define the neural underpinnings of these conditions, and identify the areas they overlap and where they are very distinct," said senior author Pratik Mukherjee, MD, PhD, a professor of radiology and biomedical imaging and bioengineering at UCSF.

SPD can be hard to pinpoint, as more than 90 percent of children with autism also are reported to have atypical sensory behaviors, and SPD has not been listed in the Diagnostic and Statistical Manual used by psychiatrists and psychologists.

"One of the most striking new findings is that the children with SPD show even greater brain disconnection than the kids with a full in some sensory-based tracts," said Elysa Marco MD, cognitive and behavioral child neurologist at UCSF Benioff Children's Hospital San Francisco and the study's corresponding author. "However, the children with autism, but not those with SPD, showed impairment in brain connections essential to the processing of facial emotion and memory."

Children with SPD struggle with how to process stimulation, which can cause a wide range of symptoms including hypersensitivity to sound, sight and touch, poor fine motor skills and easy distractibility. Some SPD children cannot tolerate the sound of a vacuum, while others can't hold a pencil or struggle with emotional regulation. Furthermore, a sound that is an irritant one day can be tolerated the next. The disease can be baffling for parents and has been a source of much controversy for clinicians who debate whether it constitutes its own disorder, according to the researchers.

"These kids, however, often don't get supportive services at school or in the community because SPD is not yet a recognized condition," said Marco. "We are starting to catch up with what parents already knew; sensory challenges are real and can be measured both in the lab and the real world. Our next challenge is to find the reason why children have SPD and move these findings from the lab to the clinic."

In the study, researchers used an advanced form of MRI called diffusion tensor imaging (DTI), which measures the microscopic movement of water molecules within the brain in order to give information about the brain's white matter tracts. The brain's white matter forms the "wiring" that links different areas of the brain and is therefore essential for perceiving, thinking and action. DTI shows the direction of the white matter fibers and the integrity of the white matter, thereby mapping the structural connections between brain regions.

The study examined the structural connectivity of specific tracts in16 boys with SPD and 15 boys with autism between the ages of 8 and 12 and compared them with 23 typically developing boys of the same age range.

The researchers found that both the SPD and autism groups showed decreased connectivity in multiple parieto-occipital tracts, the areas that handle basic sensory information in the back area of the brain. However, only the autism cohort showed impairment in the inferior fronto-occipital fasciculi (IFOF), inferior longitudinal fasciculi (ILF), fusiform-amygdala and the fusiform-hippocampus tracts - critical tracts for social-emotional processing.

"One of the classic features of autism is decreased eye-to-eye gaze, and the decreased ability to read facial emotions," said Marco. "The impairment in this specific brain connectivity, not only differentiates the autism group from the SPD group but reflects the difficulties patients with autism have in the real world. In our work, the more these regions are disconnected, the more challenge they are having with social skills."

Kids with isolated SPD showed less connectivity in the basic perception and integration tracts of the brain that serve as connections for the auditory, visual and somatosensory (tactile) systems involved in sensory processing.

"If we can start by measuring a child's connectivity and seeing how it is playing out in a child's functional ability, we can then use that measure as a metric for success in our interventions and see if the connectivities are changing based on our clinical interventions," said Marco. "Larger studies to replicate this early work are clearly needed but we are encouraged that DTI can be a powerful clinical and research tool for understanding the basis for sensory neurodevelopmental differences."

Explore further: Breakthrough study reveals biological basis for sensory processing disorders in kids

Related Stories

Breakthrough study reveals biological basis for sensory processing disorders in kids

July 9, 2013
(Medical Xpress)—Sensory processing disorders (SPD) are more prevalent in children than autism and as common as attention deficit hyperactivity disorder, yet it receives far less attention partly because it's never been ...

Autistic brain less flexible at taking on tasks, study shows

July 29, 2014
The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study from the Stanford University School of Medicine.

Autism in children affects not only social abilities, but also broad range of sensory and motor skills

June 25, 2013
A group of investigators from San Diego State University's Brain Development Imaging Laboratory are shedding a new light on the effects of autism on the brain.

Study probes why kids with autism are oversensitive to touch, noise

May 14, 2014
(HealthDay)—Certain areas in the brains of children with autism overreact to sensory stimuli, such as the touch of a scratchy sweater and loud traffic noises, a new small study shows.

Key brain 'networks' may differ in autism, study suggests

April 16, 2014
(HealthDay)—Differences in brain connectivity may help explain the social impairments common in those who have autism spectrum disorders, new research suggests.

New findings question past studies of brain differences between people with ASD and general population

January 29, 2014
(Medical Xpress)—To better understand the underlying causes of autism spectrum disorders (ASD), psychologists have been using brain scanning to compare brain structures in people with ASD and the general population. Keen ...

Recommended for you

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Nearly imperceptible fluctuations in movement correspond to autism diagnoses

January 17, 2018
A new study led by researchers at Indiana University and Rutgers University provides the strongest evidence yet that nearly imperceptible changes in how people move can be used to diagnose neurodevelopmental disorders, including ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Being bilingual may help autistic children

January 16, 2018
Children with Autism Spectrum Disorders (ASD) often have a hard time switching gears from one task to another. But being bilingual may actually make it a bit easier for them to do so, according to a new study which was recently ...

No rise in autism in US in past three years: study

January 2, 2018
After more than a decade of steady increases in the rate of children diagnosed with autism in the United States, the rate has plateaued in the past three years, researchers said Tuesday.

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Cfitness
not rated yet Jul 31, 2014
Your child CAN get occupational therapy (for sensory processing) issues at school. If he's on an IEP, request an OT eval specifically to address sensory concerns. He can get the sensory gym as well as in-school service for handwriting and strategies to to deal with his issues in the classroom. If he doesn't qualify for an IEP you can get private OT. I would recommend a therapist who does modern brain-based therapy and metronome work in addition to sensory-movement work. There is hope and an answer for your kiddo.
-Dr DeLaCroix, Cerebral Fitness Inc

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.