Major dopamine system helps restore consciousness after general anesthesia, study finds

July 22, 2014

Researchers may be one step closer to better understanding how anesthesia works. A study in the August issue of Anesthesiology, the official medical journal of the American Society of Anesthesiologists (ASA), found stimulating a major dopamine-producing region in the brain, the ventral tegmental area (VTA), caused rats to wake from general anesthesia, suggesting that this region plays a key role in restoring consciousness after general anesthesia. Activating this region at the end of surgery could provide a novel approach to proactively induce consciousness from anesthesia in surgical patients, researchers say.

"While generally safe, it is well known that patients should not be under general anesthesia longer than necessary," said Ken Solt, M.D., lead author, Massachusetts General Hospital Department of Anesthesia, Critical Care and Pain Medicine and assistant professor of anesthesia, Harvard Medical School, Boston. "Currently, there are no treatments to reverse the effects of general anesthesia. We must wait for the anesthetics to wear off. Having the ability to control the process of arousal from general anesthesia would be advantageous as it might speed recovery to normal cognition after surgery and enhance operating room (O.R.) efficiencies."

Although the brain circuits that drive the process of emerging from general anesthesia are not well understood, recent studies suggest that certain arousal pathways in the brain may be activated by certain drugs to promote consciousness. The authors previously reported that methylphenidate (Ritalin), a drug used to treat attention deficit hyperactivity disorder, awakened rats from by activating dopamine-releasing pathways.

In the current study, rats were given the general anesthetics isoflurane or propofol. Once unconscious, researchers performed targeted , through implanted steel electrodes, on the two major regions of the rats' brains that contain dopamine-releasing cells – the VTA (the area of the brain that controls cognition, motivation and reward in humans) and the substantia nigra, which controls movement.

Researchers found that electrical stimulation of the VTA caused the rats to regain consciousness, suggesting that dopamine released from cells in this area of the brain is likely involved in arousal. Interestingly, electrical stimulation of the VTA had an effect similar to that of the drug methylphenidate in restoring consciousness after anesthesia.

"We now have evidence that dopamine released by cells in the VTA is mainly responsible for the awakening effect seen with methylphenidate," said Dr. Solt. "Because dopamine-releasing cells in the VTA are important for cognition, we may be able to use drugs that act on this region not only to induce in anesthetized patients, but to potentially treat common postoperative emergence-related problems such as delirium and restore cognitive function."

Explore further: Common stimulant may speed recovery from general anesthesia

Related Stories

Common stimulant may speed recovery from general anesthesia

September 21, 2011
Administration of the commonly used stimulant drug methylphenidate (Ritalin) was able to speed recovery from general anesthesia in an animal study conducted at Massachusetts General Hospital (MGH). The report, appearing in ...

Recovery from propofol anesthesia may be sped by use of common stimulant

April 5, 2012
The ability of the commonly used stimulant methylphenidate (Ritalin) to speed recovery from general anesthesia appears to apply both to the inhaled gas isoflurane, as previously reported, and to the intravenous drug propofol. ...

Study examines how brain 'reboots' itself to consciousness after anesthesia

June 18, 2014
One of the great mysteries of anesthesia is how patients can be temporarily rendered completely unresponsive during surgery and then wake up again, with all their memories and skills intact.

Rats' brains may 'remember' odor experienced while under general anesthesia

March 18, 2014
Rats' brains may remember odors they were exposed to while deeply anesthetized, suggests research in rats published in the April issue of Anesthesiology.

To recover consciousness, brain activity passes through newly detected states

June 9, 2014
Anesthesia makes otherwise painful procedures possible by derailing a conscious brain, rendering it incapable of sensing or responding to a surgeon's knife. But little research exists on what happens when the drugs wear off.

Common brain processes of anesthetic-induced unconsciousness identified

May 23, 2013
A study from the June issue of Anesthesiology found feedback from the front region of the brain is a crucial building block for consciousness and that its disruption is associated with unconsciousness when the anesthetics ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.