Molecule enhances copper's lethal punch against microbes

July 31, 2014, Duke University Medical Center

Harnessing a natural process in the body that pumps lethal doses of copper to fungi and bacteria shows promise as a new way to kill infectious microbes, a team of scientists at Duke University report.

Publishing in the July 31, 2014, issue of the journal Chemistry & Biology, the researchers describe a way of exploiting the unique chemical response from the body's immune system to attack pathogens using , long known for its antimicrobial properties, in a way that minimizes harm to the rest of the body.

The findings in cell and animal models represent progress in developing broad-spectrum antimicrobial agents on the basis of copper biology – a much-needed advance in the face of escalating antibiotic resistance and lethal .

"There is a clear need for new strategies for antimicrobial therapies," said senior author Dennis J. Thiele, Ph.D., the George Barth Geller Professor
of Pharmacology and Cancer Biology and of Biochemistry at Duke University School of Medicine. "Copper, while essential, can be toxic when mismanaged by the body, but our work demonstrates that we can activate the metal's antimicrobial potential in a targeted fashion that focuses on the immune cells and avoids copper imbalance throughout the body."

Thiele, who has studied the biology of copper for more than 30 years, teamed with Katherine J. Franz, Ph.D., the Alexander F. Hehmeyer Associate Professor of Chemistry at Duke, to use a small molecule previously created in the Franz lab that essentially escorts additional copper to specialized chambers within immune cells called macrophages.

Faced with fungal or bacterial infections, macrophages ingest and attempt to destroy the pathogens by locking them in tiny death chambers and unleashing an oxidative burst of hydrogen peroxide, nitric oxide and other poisons, including copper. But both and bacteria deploy resistance mechanisms to the chemical onslaught in the macrophage compartments.

Thiele, Franz and colleagues used a clever chemical trick that takes advantage of this oxidative onslaught to unleash the active molecule selectively in the macrophage death chambers. The molecule then synergizes with copper already present in the cells to kill microbial pathogens. The strategy is designed to protect healthy cells by avoiding copper binding in cells that have not been infected.

"This provides a strategy for the development of compounds that exploit the activated immune response and override the copper detoxification machinery in fungal and bacterial pathogens to boost the body's own antimicrobial activity," Franz said.

Thiele said future studies will focus on enhancing the molecule's drug-like properties to optimize its ability to fight additional fungal and bacterial infections in animal models. They are also continuing to explore how the molecule works, and whether related molecules can deliver additional metal payloads, including silver, which also has .

Explore further: A bad penny: Cancer's thirst for copper can be targeted

Related Stories

A bad penny: Cancer's thirst for copper can be targeted

April 9, 2014
Drugs used to block copper absorption for a rare genetic condition may find an additional use as a treatment for certain types of cancer, researchers at Duke Medicine report.

Molecule regulates production of antibacterial agent used by immune cells

June 20, 2014
Researchers have discovered how a protein molecule in immune cells promotes the production of nitric oxide, a potent weapon in the cells' arsenal to defend the body from bacterial attack. The protein may offer a target for ...

Recommended for you

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

July 18, 2018
Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.