Protein's 'hands' enable bacteria to establish infection, research finds

July 15, 2014 by Jennifer Tidball
Kansas State University biochemists are the first to observe groups of tiny protein loops on the surface of cells. Their work is featured as the cover article for the July issue of the Journal of General Physiology. Credit: Journal of General Physiology

When it comes to infecting humans and animals, bacteria need a helping hand.

Kansas State University biochemists have found the helping hand: groups of tiny protein loops on the surface of cells. These loops are similar to the fingers of a hand, and by observing seven individual loops on the surface of E. coli , the researchers found that the loops can open or close to grab in the environment.

"These structures are like small hands on the surface of bacterial cells," said Phillip Klebba, principal investigator and professor and head of biochemistry and molecular biophysics. "They make the bacteria capable of recognizing something and grabbing it from the environment. It's amazing that such a tiny molecule can do that."

Kansas State University researchers are the first to observe this process. Their experiments may lead to new ways to protect people and animals against bacterial infections by helping scientists develop targeted treatment and intervention methods.

The research is featured as the cover article for the July issue of the Journal of General Physiology.

All cells need iron to stay alive, which puts iron at the center of the microbial pathogenesis process. When bacteria invade an animal or human, they must acquire iron to establish an infection, Klebba said.

"A microbiological war is going on in the host tissue," Klebba said. "The host is trying to prevent the microbe from getting iron. The microbe is trying to get the iron using proteins that can essentially see their environment, grab iron and internalize it into the bacterial cell."

In the latest research, the scientists used site-directed spectroscopic analysis of E. coli cells to monitor the activity of the surface transport proteins. Through their experiments, they observed the seven loops on the cell surface moving as they recognized and absorbed iron in the environment for later transport into the cell.

The absorption process happens quickly and efficiently, Klebba said. Less than a second after the enter an environment with iron compounds, they recognize the molecules, grab them and start the transfer process.

"If we can understand exactly how this acquisition process works, we can design, isolate or identify small molecules that inhibit the iron uptake process," Klebba said. "Those are potentially antimicrobial agents that could protect people and animals against ."

The scientists will continue the research to get a full understanding of how the proteins manage to transport iron from the outside to the inside of .

Explore further: Bacteria hijack plentiful iron supply source to flourish

More information: jgp.rupress.org/content/144/1/71.full

Related Stories

Bacteria hijack plentiful iron supply source to flourish

July 9, 2014
In an era of increasing concern about the prevalence of antibiotic-resistant illness, Case Western Reserve researchers have identified a promising new pathway to disabling disease: blocking bacteria's access to iron in the ...

Bacteria in cystic fibrosis lung infections become selfish

March 26, 2014
Bacteria that infect the lungs of cystic fibrosis sufferers lose their ability to work together, becoming more selfish and less cooperative the longer the infection, say scientists.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.