Stem cells aid muscle repair and strengthening after resistance exercise

July 21, 2014
University of Illinois kinesiology and community health professor Marni Boppart studies the mechanisms that enable muscles to recover and grow stronger after exercise. Credit: L. Brian Stauffer

A new study in mice reveals that mesenchymal (mezz-EN-chem-uhl) stem cells (MSCs) help rejuvenate skeletal muscle after resistance exercise.

By injecting MSCs into mouse leg muscles prior to several bouts of eccentric exercise (similar to the lengthening contractions performed during resistance training in humans that result in mild muscle damage), researchers were able to increase the rate of repair and enhance the growth and strength of those muscles in the exercising mice.

The findings, described in the journal Medicine and Science in Sports and Exercise, may one day lead to new interventions to combat age-related declines in and function, said University of Illinois kinesiology and community health professor Marni Boppart, who led the research.

"We have an interest in understanding how muscle responds to exercise, and which cellular components contribute to the increase in repair and growth with exercise," she said. "But the primary goal of our lab really is to have some understanding of how we can rejuvenate the aged muscle to prevent the physical disability that occurs with age, and to increase quality of life in general as well."

MSCs occur naturally in the body and may differentiate into several different cell types. They form part of the stroma, the connective tissue that supports organs and other tissues.

MSCs also excrete growth factors and, according to the new study, stimulate , called satellite cells, to expand inside the tissue and contribute to repair following injury. Once present and activated, actually fuse to the damaged and form new fibers to reconstruct the muscle and enhance strength.

"Satellite cells are a primary target for the rejuvenation of aged muscle, since activation becomes increasingly impaired and recovery from injury is delayed over the lifespan," Boppart said. "MSC transplantation may provide a viable solution to reawaken the aged satellite cell."

Satellite cells themselves will likely never be used therapeutically to enhance repair or strength in young or aged muscle "because they cause an immune response and rejection within the tissue," Boppart said. But MSCs are "immunoprivileged," meaning that they can be transplanted from one individual to another without sparking an immune response.

"Skeletal muscle is a very complex organ that is highly innervated and vascularized, and unfortunately all of these different tissues become dysfunctional with age," Boppart said. "Therefore, development of an intervention that can heal multiple tissues is ideally required to reverse age-related declines in mass and function. MSCs, because of their ability to repair a variety of different tissue types, are perfectly suited for this task."

Explore further: Exercise triggers stem cells in muscle

More information: The paper, "Mesenchymal stem cells augment the adaptive response to eccentric exercise," is in press and is available online.

Related Stories

Exercise triggers stem cells in muscle

February 6, 2012
University of Illinois researchers determined that an adult stem cell present in muscle is responsive to exercise, a discovery that may provide a link between exercise and muscle health. The findings could lead to new therapeutic ...

At the right place at the right time—new insights into muscle stem cells

September 17, 2012
Muscles have a pool of stem cells which provides a source for muscle growth and for regeneration of injured muscles. The stem cells must reside in special niches of the muscle for efficient growth and repair.

Cancer wasting due in part to tumor factors that block muscle repair, study shows

October 23, 2013
A new study reveals that tumors release factors into the bloodstream that inhibit the repair of damaged muscle fibers, and that this contributes to muscle loss during cancer wasting. The condition, also called cancer cachexia, ...

Loss of antioxidant protein Nrf2 represses regeneration of muscle lost to aging

March 10, 2014
Good news for lifelong exercisers: Along with its salutary effects on the heart, weight, and other facets of health, physical activity also helps to regenerate muscle mass, which tends to diminish as people age.

Researchers rejuvenate stem cell population from elderly mice, enabling muscle recovery

February 16, 2014
Researchers at the Stanford University School of Medicine have pinpointed why normal aging is accompanied by a diminished ability to regain strength and mobility after muscle injury: Over time, stem cells within muscle tissues ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.