Viral relics show cancer's 'footprint' on our evolution

July 17, 2014, Oxford University

Viral relics show cancer's 'footprint' on our evolution Cancer has left its 'footprint' on our evolution, according to a study which examined how the relics of ancient viruses are preserved in the genomes of 38 mammal species.

Viral relics are evidence of the ancient battles our genes have fought against infection. Occasionally the retroviruses that infect an animal get incorporated into that animal's genome and sometimes these relics get passed down from generation to generation – termed 'endogenous retroviruses' (ERVs). Because ERVs may be copied to other parts of the genome they contribute to the risk of cancer-causing mutations.

Now a team from Oxford University, Plymouth University, and the University of Glasgow has identified 27,711 ERVs preserved in the genomes of 38 mammal species, including humans, over the last 10 million years. The team found that as increased in size they 'edited out' these potentially cancer-causing relics from their genomes so that mice have almost ten times as many ERVs as humans. The findings offer a clue as to why larger animals have a lower incidence of cancer than expected compared to smaller ones, and could help in the search for new anti-viral therapies.

A report of the research is published in the journal PLOS Pathogens.

'We set out to find as many of these viral relics as we could in everything from shrews and humans to elephants and dolphins,' said Dr Aris Katzourakis of Oxford University's Department of Zoology, lead author of the report. 'Viral relics are preserved in every cell of an animal: Because larger animals have many more cells they should have more of these endogenous retroviruses (ERVs) – and so be at greater risk of ERV-induced mutations – but we've found this isn't the case. In fact larger animals have far fewer ERVs, so they must have found ways to remove them.'

A combination of mathematical modelling and genome research uncovered some striking differences between mammal genomes: mice (c.19 grams) have 3331 ERVs, humans (c.59 kilograms) have 348 ERVs, whilst dolphins (c.281 kilograms) have just 55 ERVs.

'This is the first time that anyone has shown that having a large number of ERVs in your genome must be harmful – otherwise larger animals wouldn't have evolved ways of limiting their numbers,' said Dr Katzourakis. 'Logically we think this is linked to the increased risk of ERV-based cancer-causing mutations and how mammals have evolved to combat this risk. So when we look at the pattern of ERV distribution across mammals it's like looking at the 'footprint' cancer has left on our evolution.'

Dr Robert Belshaw of Plymouth University Peninsula Schools of Medicine and Dentistry, School of Biomedical and Healthcare Sciences, added: "Cancer is caused by errors occurring in cells as they divide, so bigger animals - with more cells - ought to suffer more from cancer. Put simply, the blue whale should not exist. However, larger animals are not more prone to cancer than smaller ones: this is known as Peto's Paradox (named after Sir Richard Peto, the scientist credited with first spotting this). A team of scientists at Oxford, Plymouth and Glasgow Universities had been studying endogenous retroviruses, viruses like HIV but which have become part of their host's genome and which in other animals can cause cancer. Surprisingly, they found that bigger mammals have fewer of these viruses in their genome. This suggests that similar mechanism might be involved in fighting both cancer and the spread of these viruses, and that these are better in bigger animals (like humans) than smaller ones (like laboratory mice)."

ERVs that are immediately harmful to an animal tend not be passed on, what makes them troublesome is that having arrived at one location in a genome the replication process means they can be copied across, 'jumping', to somewhere else. ERVs can, for example, 'jump' into the middle of gene machinery responsible for suppressing tumours, damaging it and ratcheting up the risk of mutations turning into cancer.

'We know that some cancers, such as t-cell leukaemia, are directly linked to retroviruses but a lot of the time ERVs contribute to the number of things that need to go wrong in cells for cancers to arise,' said Dr Katzourakis. 'As animals get bigger so the number of cells increases and there are more opportunities for things to go wrong, so there is an evolutionary pressure for larger animals to reduce the number of ERVs.'

Dr Gkikas Magiorkinis of Oxford University's Department of Zoology, an author of the report, said: 'We know that taller people have higher risk for some cancers, which fits our study about ERVs posing evolutionary pressure through cancer. Yet we still have no evidence that ERVs might have causal links with cancer in humans, even though they clearly cause cancers in other animals such as mice. We need to search in a more systematic way to see if ERVs cause cancer in humans, and our study suggests that viral pathogenic mechanisms in larger animals like humans would be more complex than those observed in smaller animals.'

Dr Robert Belshaw of Plymouth University Peninsula Schools of Medicine and Dentistry, School of Biomedical and Healthcare Sciences, added: 'Cancer is caused by errors occurring in cells as they divide, so bigger animals - with more cells - ought to suffer more from cancer. Put simply, the blue whale should not exist. However, larger animals are not more prone to cancer than smaller ones: this is known as Peto's Paradox (named after Sir Richard Peto, the scientist credited with first spotting this). A team of scientists at Oxford, Plymouth and Glasgow Universities had been studying endogenous retroviruses, viruses like HIV but which have become part of their host's genome and which in other animals can cause cancer. Surprisingly, they found that bigger mammals have fewer of these viruses in their genome. This suggests that similar mechanism might be involved in fighting both cancer and the spread of these viruses, and that these are better in bigger animals (like humans) than smaller ones (like laboratory mice).'

The research suggests that larger creatures must have more effective anti-viral genes and resources than smaller ones and, if these can be identified, in the future it may be possible to mimic these mechanisms to produce new anti-viral therapies.

The new study is relevant to Peto's Paradox, an observation made by Sir Richard Peto that the incidence of does not appear to correlate with the number of cells in an organism. 'Our work doesn't solve Peto's paradox as a whole but is has solved it in respect of infection,' said Dr Katzourakis.

Explore further: Mobile DNA elements can disrupt gene expression and cause biological variation, study shows

More information: Larger Mammalian Body Size Leads to Lower retroviral Activity, PLOS Pathogens, 2014.

Related Stories

Mobile DNA elements can disrupt gene expression and cause biological variation, study shows

February 23, 2012
The many short pieces of mobile DNA that exist in the genome can contribute to significant biological differences between lineages of mice, according to a new study led by researchers at the Ohio State University Comprehensive ...

A mini-antibody with broad antiviral activity chews up viral DNA and RNA

June 26, 2014
Antibodies and their derivatives can protect plants and animals—including humans—against viruses. Members of this class of drugs are usually highly specific against components of a particular virus, and mutations in the ...

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.