Virus-killing molecules may need all their skills, including inflammation, to fight HIV infection

July 28, 2014
Multiprong response of Type 1 interferon to invading pathogens. Credit: Weizmann Institute of Science

Using the body's natural virus killers to prevent and treat HIV infection has been problematic until now because of the strong inflammatory response these molecules can arouse as they get rid of the invaders. Now, collaborative research conducted by scientists at the Weizmann Institute and the National Institutes of Health (NIH) have demonstrated how suppressing the activity of these molecules – interferons – around the time of infection could have long-term implications for the course of the disease. Their research appeared in Nature.

Interferons, named for their ability to "interfere" with viral replication, protect us against disease, but they are also the source of inflammation when we are sick. Today, interferons are used to treat such viral diseases as hepatitis. But in HIV, it has been thought that the inflammation and other side effects could be too harmful and the danger of a "runaway" immune response too great. Prof. Gideon Schreiber of the Weizmann Institute's Biological Chemistry Department and team, including postdoctoral fellow Dr. Doron Levin and former postdoc Dr. Ganit Yarden, had, in previous research, designed an antagonist molecule that is able to block some of the activities of interferons while still allowing them to proceed to act against viruses.

Their original motivation, says Schrieber, was to better understand the mechanisms of different versions of the interferon molecule. This research revealed that the activity of each interferon is tuned to specific cells and viruses. The molecule they had created, says Schrieber, "was not a true 'antagonist' in the biological sense: Instead of blocking all IFN activity, it was able to target the mechanisms leading to the prevention of replication and modulation of the immune system, leaving the antiviral activity mostly intact."

Next, Schrieber and his group teamed up with Dr. Netanya Sandler and Prof. Daniel Douek at the NIH to understand what happens when full-out interferon activity is tampered with in HIV. The research was done on simian immunodeficiency virus (SIV) – the animal equivalent to HIV. Their results show that the actions blocked by the molecule may have important functions, even if they appear to be "detrimental." The team administered an antagonist, blocking a IFN for the first four weeks after infection. Even after this short period, they found that the natural immune system activities did not recover and compensate to the level they otherwise would have; and this led to a progression of the disease.

Schreiber: "These results clearly demonstrate the importance of an early, general IFN response in fighting HIV infection, and removing the 'harmful' IFN functions even for just a short period at the onset of infection can have devastating and permanent consequences in shaping the course of disease." Taken together, these findings suggest that not only the type of treatment, but also the timing of IFN administration needs to be considered in the management and prevention of disease.

Explore further: Which interferons best control viral infections?

More information: Nature (2014) DOI: 10.1038/nature13554

Related Stories

Which interferons best control viral infections?

June 26, 2014
Respiratory and intestinal infections caused by RNA viruses stimulate infected cells to produce interferons, which can act alone or in combination to block virus replication. Important differences between the presence of ...

Researchers find interferon has both detrimental and beneficial effects on SIV infected rhesus macaques

July 10, 2014
(Medical Xpress)—A large team of researchers with affiliations to several facilities in the U.S. and Israel has found that administering Type 1 interferon to rhesus macaques infected with Simian Immunodeficiency Virus (SIV) ...

Potential therapy for HIV suggested: Blocking key protein boosts body's ability to clear chronic infection

April 11, 2013
UCLA scientists have shown that temporarily blocking a protein critical to immune response actually helps the body clear itself of chronic infection. Published in the April 12 edition of Science, the finding suggests new ...

Primate research center plays key role in HIV study in Nature

July 23, 2014
In a study reported in Nature this month, Yerkes National Primate Research Center researchers were key in determining that treating SIV-infected rhesus macaques with type 1 interferon, a protein known to trigger antiviral ...

Mammals defend against viruses differently than invertebrates

June 23, 2014
Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer ...

Two competing proteins affect the chronic inflammation of the nervous system following viral infection

May 9, 2014
Fatigue and depression are common during and after viral infection, and in some cases can become chronic long-term ailments. Fever and inflammation associated with viral infections are triggered by the release of proinflammatory ...

Recommended for you

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

Scientists capture first high-resolution image of key HIV protein transitional state

July 13, 2017
A new, three-dimensional snapshot of HIV demonstrates the radical structural transformations that enable the virus to recognize and infect host cells, according to a new study led by scientists at The Scripps Research Institute ...

Barrier to autoimmune disease may open door to HIV, study suggests

July 11, 2017
Researchers from the University of Colorado School of Medicine have discovered that a process that protects the body from autoimmune disease also prevents the immune system from generating antibodies that can neutralize the ...

Team tests best delivery mode for potential HIV vaccine

June 20, 2017
For decades, HIV has successfully evaded all efforts to create an effective vaccine but researchers at The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology (LJI) are steadily inching ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.