New study sheds light on how children's brains memorize facts

August 17, 2014, Stanford University Medical Center

As children learn basic arithmetic, they gradually switch from solving problems by counting on their fingers to pulling facts from memory. The shift comes more easily for some kids than for others, but no one knows why.

Now, new -imaging research gives the first evidence drawn from a longitudinal study to explain how the brain reorganizes itself as learn math facts. A precisely orchestrated group of brain changes, many involving the memory center known as the , are essential to the transformation, according to a study from the Stanford University School of Medicine.

The results, which will be published online Aug. 17 in Nature Neuroscience, explain brain reorganization during normal development of cognitive skills and will serve as a point of comparison for future studies of what goes awry in the brains of children with learning disabilities.

"We wanted to understand how children acquire new knowledge, and determine why some children learn to retrieve facts from memory better than others," said Vinod Menon, PhD, professor of psychiatry and behavioral sciences and the senior author of the study. "This work provides insight into the dynamic changes that occur over the course of cognitive development in each child."

The study also adds to prior research into the differences between how children's and adults' brains solve . Children use certain brain regions, including the hippocampus and the prefrontal cortex, very differently from adults when the two groups are solving the same types of math problems, the study showed.

"It was surprising to us that the hippocampal and prefrontal contributions to memory-based problem-solving during childhood don't look anything like what we would have expected for the adult brain," said postdoctoral scholar Shaozheng Qin, PhD, who is the paper's lead author.

Charting the Shifting Strategy

In the study, 28 children solved simple math problems while receiving two functional magnetic resonance imaging brain scans; the scans were done about 1.2 years apart. The researchers also scanned 20 adolescents and 20 adults at a single time point. At the start of the study, the children were ages 7-9. The adolescents were 14-17 and the adults were 19-22. The participants had normal IQs. Because the study examined normal math learning, potential participants with math-related learning disabilities and attention deficit hyperactivity disorder were excluded. The children and adolescents were studying math in school; the researchers did not provide any math instruction.

During the study, as the children aged from an average of 8.2 to 9.4 years, they became faster and more accurate at solving math problems, and relied more on retrieving math facts from memory and less on counting. As these shifts in strategy took place, the researchers saw several changes in the children's brains. The hippocampus, a region with many roles in shaping new memories, was activated more in children's brains after one year. Regions involved in counting, including parts of the prefrontal and parietal cortex, were activated less.

The scientists also saw changes in the degree to which the hippocampus was connected to other parts of children's brains, with several parts of the prefrontal, anterior temporal cortex and more strongly connected to the hippocampus after one year. Crucially, the stronger these connections, the greater was each individual child's ability to retrieve math facts from memory, a finding that suggests a starting point for future studies of math-learning disabilities.

Although children were using their hippocampus more after a year, adolescents and adults made minimal use of their hippocampus while solving math problems. Instead, they pulled math facts from well-developed information stores in the neocortex.

Memory Scaffold

"What this means is that the hippocampus is providing a scaffold for learning and consolidating facts into long-term memory in children," Menon said. Children's brains are building a schema for mathematical knowledge. The hippocampus helps support other parts of the brain as adultlike neural connections for solving math problems are being constructed. "In adults this scaffold is not needed because memory for math facts has most likely been consolidated into the neocortex," he said. Interestingly, the research also showed that, although the adult hippocampus is not as strongly engaged as in children, it seems to keep a backup copy of the math information that adults usually draw from the neocortex.

The researchers compared the level of variation in patterns of brain activity as children, adolescents and adults correctly solved math problems. The brain's activity patterns were more stable in adolescents and adults than in children, suggesting that as the brain gets better at solving math problems its activity becomes more consistent.

The next step, Menon said, is to compare the new findings about normal math learning to what happens in children with math-learning disabilities.

"In children with math-learning disabilities, we know that the ability to retrieve facts fluently is a basic problem, and remains a bottleneck for them in high school and college," he said. "Is it that the hippocampus can't provide a reliable scaffold to build good representations of math facts in other parts of the brain during the early stages of learning, and so the child continues to use inefficient strategies to solve math problems? We want to test this."

Explore further: Size, wiring of brain structures in kids predict benefit from math tutoring, study says

More information: Paper - dx.doi.org/10.1038/nn.3788

Related Stories

Size, wiring of brain structures in kids predict benefit from math tutoring, study says

April 29, 2013
(Medical Xpress)—Why do some children learn math more easily than others? Research from the Stanford University School of Medicine has yielded an unexpected new answer.

How early math lessons change children's brains

June 7, 2011
(Medical Xpress) -- Researchers from the Stanford University School of Medicine have demonstrated that a single year of math lessons is associated with unexpectedly big changes in the brain’s approach to problem solving ...

Kids with autism outperformed others on math test, study found

August 16, 2013
(HealthDay)—Children with autism and average IQs consistently did better on math tests than non-autistic children in the same IQ range, according to a small new study.

Autistic brain less flexible at taking on tasks, study shows

July 29, 2014
The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study from the Stanford University School of Medicine.

Who's afraid of math? Genetics plays a role, but researchers say environment still key

March 17, 2014
A new study of math anxiety shows how some people may be at greater risk to fear math not only because of negative experiences, but also because of genetic risks related to both general anxiety and math skills.

Imaging study reveals differences in brain function for children with math anxiety

March 21, 2012
Scientists at the Stanford University School of Medicine have shown for the first time how brain function differs in people who have math anxiety from those who don't.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.