Drug for rare blood disorder developed at Penn receives orphan drug status from EU

August 26, 2014

A Penn Medicine-developed drug has received orphan status in Europe this week for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, life-threatening disease that causes anemia due to destruction of red blood cells and thrombosis. Orphan status brings such benefits as tax incentives, market exclusivity for 10 years, possibilities for additional research funding, and additional guidance from the European Medicines Agency during clinical development. This designation for the compound, called AMY-101, will allow Amyndas, the company currently developing the compound, to proceed with expedited clinical development.

AMY-101 is a new way to fight PNH, which is currently only treatable with the most expensive drug available for sale in the United States. The new strategy is based on inhibiting C3, a central component of the oldest part of the human immune system – called "complement"—and could turn out to be less costly and more effective for the majority of patients with this rare blood disorder.

Complement is a network of more than 50 proteins in the blood and on cell surfaces, part of the innate immune system, that quietly cruise the body, keeping a low profile until triggered into action. But this defense system can also be inappropriately activated and attack cells, contributing to a broad spectrum of immune, inflammatory, and age-related diseases.

John Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine in the Department of Pathology and Laboratory Medicine in the Perelman School of Medicine, studies this early-warning system and how to correct it when its response goes overboard. Lambris developed AMY-101 at Penn and the university licensed it to Amyndas, which is now further developing the compound for application in the clinic.

PNH affects between 1 and 5 per million people and is caused by a defective expression of regulatory proteins on the surface of , leaving them vulnerable to complement attack. This can lead to premature death of the red blood cells, a process called hemolysis, which results in severe anemia and contributes to a high risk of clotting. AMY-101 tames this inappropriate complement activation and protects cell surfaces from attack.

Although there is an expensive treatment for PNH, one third of patients continue to require blood transfusions to manage their anemia. This non-response is due to fragments of complement C3 proteins on the surface of their , which are eventually attacked by immune cells.

Lambris and colleagues harnessed the idea that inhibition of the complement cascade using small inhibitory molecules like AMY-101 would be a better strategy to prevent hemolysis and immune cell recognition while being potentially more cost-effective.

The team investigated the effect of AMY-101 on self attack and resulting hemolysis using human PNH cells, and found it be active. The Orphan Drug designation of AMY-101 by the European Union is the next step toward clinical trials for PNH patients and orphan drug status designation from the U.S. Food and Drug Administration.

Explore further: Study suggests affordable and effective treatment of rare blood disorder

Related Stories

Study suggests affordable and effective treatment of rare blood disorder

February 27, 2014
A University of Pennsylvania research team has defined a possible new way to fight a disease that is currently treatable only with the most expensive drug available for sale in the United States. In a study published this ...

Researchers discover treatment for rare blood cancer

January 29, 2014
University of British Columbia researchers have discovered a potential new treatment for a rare blood cancer that may also point the way to treating other more common diseases.

Team identifies promising new target for gum disease treatment

May 20, 2014
(Medical Xpress)—Nearly half of all adults in the United States suffer from the gum disease periodontitis, and 8.5 percent have a severe form that can raise the risk of heart disease, diabetes, arthritis and pregnancy complications.

Tackling liver injury

August 11, 2014
A new drug spurs liver regeneration after surgery, according to a paper published in The Journal of Experimental Medicine.

Recommended for you

Mind-body therapies immediately reduce unmanageable pain in hospital patients

July 25, 2017
Mindfulness training and hypnotic suggestion significantly reduced acute pain experienced by hospital patients, according to a new study published in the Journal of General Internal Medicine.

Study suggests ending opioid epidemic will take years

July 20, 2017
The question of how to stem the nation's opioid epidemic now has a major detailed response. A new study chaired by University of Virginia School of Law Professor Richard Bonnie provides extensive recommendations for curbing ...

Team-based model reduces prescription opioid use among patients with chronic pain by 40 percent

July 17, 2017
A new, team-based, primary care model is decreasing prescription opioid use among patients with chronic pain by 40 percent, according to a new study out of Boston Medical Center's Grayken Center for Addiction Medicine, which ...

Private clinics' peddling of unproven stem cell treatments is unsafe and unethical

July 7, 2017
Stem cell science is an area of medical research that continues to offer great promise. But as this week's paper in Science Translational Medicine highlights, a growing number of clinics around the globe, including in Australia, ...

Popular heartburn drugs linked to higher death risk

July 4, 2017
Popular heartburn drugs called proton pump inhibitors (PPIs) have been linked to a variety of health problems, including serious kidney damage, bone fractures and dementia. Now, a new study from Washington University School ...

Most reproductive-age women using opioids also use another substance

June 30, 2017
The majority of reproductive-age and pregnant women who use opioids for non-medical purposes also use at least one other substance, ranging from nicotine or alcohol to cocaine, according to a University of Pittsburgh Graduate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.