Epigenetic breakthrough bolsters understanding of Alzheimer's disease

August 17, 2014
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

A team led by researchers at the University of Exeter Medical School and King's College London has uncovered some of the strongest evidence yet that epigenetic changes in the brain play a role in Alzheimer's disease.

Epigenetic changes affect the expression or activity of genes without changing the underlying DNA sequence and are believed to be one mechanism by which the environment can interact with the genome. Importantly, are potentially reversible and may therefore provide targets for the development of new therapies.

Globally, more than 26 million people are currently affected by Alzheimer's Disease. As this number grows in line with an increasingly aging population, the need to identify new disease mechanisms is more important than ever. Post-mortem examinations have revealed much about how Alzheimer's damages the , with some regions, such as the , being particularly susceptible, while others, such as the cerebellum, remain virtually unscathed. However, little is yet known about how and why the disease develops in specific brain regions.

The current study found that chemical modifications to DNA within the ANK1 gene are strongly associated with measures of neuropathology in the brain. The study, published in Nature Neuroscience, found that people with more Alzheimer's disease-related neuropathology in their brains had higher levels of DNA modifications within the ANK1 gene. The finding was particularly strong in the entorhinal cortex, and also detected in other cortical regions affected by the disease. In contrast, no significant changes were observed in less affected brain regions or blood.

Professor Jonathan Mill, of the University of Exeter Medical School and King's College London, who headed the study, said: "This is the strongest evidence yet to suggest that epigenetic changes in the brain occur in Alzheimer's disease, and offers potential hope for understanding the mechanisms involved in the onset of dementia. We don't yet know why these changes occur – it's possible that they are involved in disease onset, but they may also reflect changes induced by the disease itself."

Dr Katie Lunnon, first author on the study, from the University of Exeter Medical School, added: "It's intriguing that we find changes specifically in the regions of the brain involved in Alzheimer's disease. Future studies will focus on isolating different cell-types from the brain to see whether these changes are neuron-specific."

Dr Simon Ridley, Head of Research at Alzheimer's Research UK, the UK's leading dementia research charity, who also provided funding for the study said:

"We know that changes to the DNA code of certain genes are associated with an increased risk of developing Alzheimer's disease. Investigating how epigenetic changes influence genes in Alzheimer's is still a relatively new area of study. The importance of understanding this area of research is highlighted by the fact that epigenetic changes have been associated with development of other diseases, including cancer.

"This innovative research has discovered a potential new mechanism involved in Alzheimer's by linking the ANK1 gene to the disease. We will be interested to see further research into the role of ANK1 in Alzheimer's and whether other epigenetic changes may be involved in the disease."

"Alzheimer's affects millions of people worldwide and we need pioneering research to understand exactly why the disease occurs. Alzheimer's Research UK is helping to fund research which will take us a step closer to understanding and defeating this devastating disease."

Explore further: Changes in epigenetic DNA functions reveal how diabetes predisposes individuals to Alzheimer's

More information: Paper: dx.doi.org/10.1038/nn.3782
Related paper: dx.doi.org/10.1038/nn.3786

Related Stories

Changes in epigenetic DNA functions reveal how diabetes predisposes individuals to Alzheimer's

October 23, 2013
Diabetes and dementia are rising dramatically in the United States and worldwide. In the last few years, epidemiological data has accrued showing that older people with diabetes are significantly more likely to develop cognitive ...

Potential biomarkers for the diagnosis of Alzheimer's disease

January 31, 2014
Researchers identify abnormal expression of genes, resulting from DNA relaxation, that can be detected in the brain and blood of Alzheimer's patients.

Can amyloid plaque in Alzheimer's disease affect remote regions of the brain?

July 21, 2014
In Alzheimer's disease, accumulation of amyloid plaque in the brain is believed to play an important role in many characteristic disease symptoms, including memory loss and other mental state changes. But how these plaque ...

Researchers discover an epigenetic lesion in the hippocampus of Alzheimer's

January 21, 2014
Alzheimer's disease can reach epidemic range in the coming decades, by the increasing average age of society. There are two key issues for Alzheimer's disease: there is currently no effective treatment and it has been described ...

Researchers identify variation in gene PLD3 can increase risk of late-onset Alzheimer’s disease

December 24, 2013
(Medical Xpress)—A new study, part-funded by the Medical Research Council (MRC), the Wellcome Trust and Alzheimer's Research UK, has shown that a fault in a gene called phospholipase D3 (PLD3) can contribute to the overproduction ...

Researchers identify potential gene that may increase risk of ad in African Americans

August 4, 2014
Researchers from Boston University School of Medicine (BUSM) report that two rare variants in the AKAP9 gene significantly increase the risk of Alzheimer's disease (AD) in African-Americans.

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.