Maturing brain flips function of amygdala in regulating stress hormones

August 20, 2014
Maturing brain flips function of amygdala in regulating stress hormones
The amygdala is a region of the brain known to be important for responses to threats and learning about threats. Its function regulating stress hormones undergoes significant changes as the brain matures, Yerkes research suggests. Credit: NIMH

In contrast to evidence that the amygdala stimulates stress responses in adults, researchers at Yerkes National Primate Research Center, Emory University have found that the amygdala has an inhibitory effect on stress hormones during the early development of nonhuman primates.

The results are published this week in Journal of Neuroscience.

The is a region of the brain known to be important for responses to threatening situations and learning about threats. Alterations in the amygdala have been reported in psychiatric disorders such as depression, , schizophrenia and autism spectrum disorder. However, much of what is known about the amygdala comes from research on adults.

"Our findings fit into an emerging theme in neuroscience research: that during childhood, there is a switch in amygdala function and connectivity with other brain regions, particularly the prefrontal cortex," says Mar Sanchez, PhD, neuroscience researcher at Yerkes and associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. The first author of the paper is postdoctoral fellow Jessica Raper, PhD.

The findings are part of a larger longitudinal study at Yerkes National Primate Research Center, examining how amygdala damage within the first month of life affects the development of social and emotional behaviors and neuroendocrine systems in rhesus monkeys from infancy through adulthood. The laboratories of Sanchez and Yerkes researchers Jocelyne Bachevalier, PhD and Kim Wallen, PhD are collaborating on this project.

Previous investigations at Yerkes found that as infants, monkeys with amygdala damage showed higher levels of the . This surprising result contrasted with previous research on adults, which showed that amygdala damage results in lower levels of cortisol.

The team hypothesized that damage to the amygdala generated changes in the HPA axis: a network of endocrine interactions between the hypothalamus within the brain, the pituitary and the adrenal glands, critical for reactions to stress.

"We wanted to examine whether the alterations in seen during infancy persisted, and what brain changes were responsible for them," Sanchez says. "In studies of adults, the amygdala and its connections are fully formed at the time of the manipulation, but here neither the amygdala or its connections were fully matured when the damage occurred."

In the current paper, the authors demonstrated that in contrast with adult animals with amygdala damage, juvenile monkeys with early amygdala damage had increased levels of cortisol in the blood, compared to controls. In their cerebrospinal fluid, they also had elevated levels of corticotropin releasing factor (CRF), the neuropeptide that initiates the stress response in the brain. Elevated CRF and cortisol are linked to anxiety and emotional dysregulation in patients with mood disorders.

Despite the increased levels of stress hormones, monkeys with early amygdala damage exhibit a blunted emotional reactivity to threats, including decreased fear and aggression, and reduced anxiety in response to stress. Still, monkeys with neonatal amygdala damage remain competent in interacting with others in their large social groups. These findings are consistent with reports of human patients with damage to the amygdala, Raper says.

"We speculate that the rich social environment provided to the monkeys promotes compensatory mechanisms in cortical regions implicated in the regulation of social behavior," she says. "But neonatal amygdala damage seems more detrimental for the development of stress neuroendocrine circuits in other areas of the brain."

The investigators plan to follow the animals into adulthood to investigate the long-term effects of early amygdala damage on stress hormones, behavior and physiological systems possibly affected by chronically , such as immune, growth and reproductive functions.

Explore further: Anxious children have bigger 'fear centers' in the brain

More information: Journal of Neuroscience, www.jneurosci.org/content/34/34/11452.short

Related Stories

Anxious children have bigger 'fear centers' in the brain

June 16, 2014
The amygdala is a key "fear center" in the brain. Alterations in the development of the amygdala during childhood may have an important influence on the development of anxiety problems, reports a new study in the current ...

A new brain-based marker of stress susceptibility

July 29, 2014
Some people can handle stressful situations better than others, and it's not all in their genes: Even identical twins show differences in how they respond.

PTSD can develop even without memory of the trauma

August 14, 2014
There are many forms of memory and only some of these may be critical for the development of posttraumatic stress disorder (PTSD), reports a new study by researchers at the University at Albany and the University of California ...

Size, connectivity of brain region linked to anxiety level in young children

November 20, 2013
Prolonged stress and anxiety during childhood is a risk factor for developing anxiety disorders and depression later in life. Now, Stanford University School of Medicine researchers have shown that by measuring the size and ...

Notch developmental pathway regulates fear memory formation

August 7, 2014
Nature is thrifty. The same signals that embryonic cells use to decide whether to become nerves, skin or bone come into play again when adult animals are learning whether to become afraid.

Stress hormones: Good or bad for posttraumatic stress disorder risk?

September 12, 2012
Glucocorticoids, a group of hormones that includes cortisol, are considered stress hormones because their levels increase following stress. When their relationship to stress was first identified, it was shown that the release ...

Recommended for you

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Afternoon slump in reward response

August 21, 2017
Activation of a reward-processing brain region peaks in the morning and evening and dips at 2 p.m., finds a study of healthy young men published in The Journal of Neuroscience. This finding may parallel the drop in alertness ...

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.