New method for creating bone tissue and cartilage tissue

August 13, 2014, University of Twente

UT-Doctoral Degree Candidate Anne Leferink has discovered a new method for creating bone tissue and cartilage tissue. By sequencing structures, it is possible to create a larger piece of bone tissue or cartilage tissue than was possible with current techniques. The aim is to create as much bone as possible using as few stem cells as possible. The technique has to be injectable, so that complex bone defects such as osteoporosis or arthritis can be treated without surgery. Leferink: "I haven't made any bone yet, but we do expect it to work."

Leferink is studying the applicability of various clinical imaging procedures in order to visualize the growth of cultured bone. She cultured herself in order to visualize the process. While doing this she discovered a new method for creating and . The method works by combining small blocks, microstructures, with stem cells. The encapsulate the blocks in epoxy resin or polylactic acid. This results in small particles of bone-like material, that eventually join up with one another. This results in strong tissue that is much larger than is possible with current techniques.

During the next two years Leferink will start working as a postgraduate in order to test the technique together with researchers of the University of Maastricht. She wants to use this method to treat complex bone defects in difficult locations such as osteoporosis. The technique can also be used for arthritis, for creating new cartilage when it has shifted. "We want to achieve this by making the small blocks injectable. The treatment of for instance a cartilage defect, such as meniscus, is currently operative. A doctor has to find a way of getting to the damaged location." Leferink wants to inject the small blocks in a gel, so that bone or cartilage starts growing around the blocks. "Tissue grows very slowly or not at all at the edges of a defect in bone or cartilage. The small blocks, however, provide the cells with an anchor point, and recovery is more rapid." A technique does already exist that involves injecting gel in an attempt to heal damaged or cartilage, and it works. Leferink: "But that technique is not mechanically stable, the gel can move once pressure is exerted. This is why you are not allowed to use the body part during convalescence. Even though using the body part is particularly important in order to make it strong. If all goes well, the body part will be mechanically stable with our technique."

Anne Leferink will obtain her doctoral degree on 3 July with the Tissue Regeneration department of the MIRA research institute. Her study results have been published in the renowned scientific physics journal Advanced Materials. Her thesis supervisor is prof. dr. Clemens van Blitterswijk.

Explore further: Researcher discovers new method for creating bone tissue and cartilage tissue

Related Stories

Researcher discovers new method for creating bone tissue and cartilage tissue

July 23, 2014
UT-Doctoral Degree Candidate Anne Leferink has discovered a new method for creating bone tissue and cartilage tissue. By sequencing structures, it is possible to create a larger piece of bone tissue or cartilage tissue than ...

Columbia engineers grow functional human cartilage in lab

April 30, 2014
Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways ...

Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

April 23, 2013
Researchers at Micro Orthopaedics, Zhongnan Hospital of Wuhan University, led by Dr. Ai-xi Yu, have suggested that articular cartilage defects can be repaired by a novel thermo-sensitive injectable hydrogel engineered with ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.