New method for creating bone tissue and cartilage tissue

August 13, 2014

UT-Doctoral Degree Candidate Anne Leferink has discovered a new method for creating bone tissue and cartilage tissue. By sequencing structures, it is possible to create a larger piece of bone tissue or cartilage tissue than was possible with current techniques. The aim is to create as much bone as possible using as few stem cells as possible. The technique has to be injectable, so that complex bone defects such as osteoporosis or arthritis can be treated without surgery. Leferink: "I haven't made any bone yet, but we do expect it to work."

Leferink is studying the applicability of various clinical imaging procedures in order to visualize the growth of cultured bone. She cultured herself in order to visualize the process. While doing this she discovered a new method for creating and . The method works by combining small blocks, microstructures, with stem cells. The encapsulate the blocks in epoxy resin or polylactic acid. This results in small particles of bone-like material, that eventually join up with one another. This results in strong tissue that is much larger than is possible with current techniques.

During the next two years Leferink will start working as a postgraduate in order to test the technique together with researchers of the University of Maastricht. She wants to use this method to treat complex bone defects in difficult locations such as osteoporosis. The technique can also be used for arthritis, for creating new cartilage when it has shifted. "We want to achieve this by making the small blocks injectable. The treatment of for instance a cartilage defect, such as meniscus, is currently operative. A doctor has to find a way of getting to the damaged location." Leferink wants to inject the small blocks in a gel, so that bone or cartilage starts growing around the blocks. "Tissue grows very slowly or not at all at the edges of a defect in bone or cartilage. The small blocks, however, provide the cells with an anchor point, and recovery is more rapid." A technique does already exist that involves injecting gel in an attempt to heal damaged or cartilage, and it works. Leferink: "But that technique is not mechanically stable, the gel can move once pressure is exerted. This is why you are not allowed to use the body part during convalescence. Even though using the body part is particularly important in order to make it strong. If all goes well, the body part will be mechanically stable with our technique."

Anne Leferink will obtain her doctoral degree on 3 July with the Tissue Regeneration department of the MIRA research institute. Her study results have been published in the renowned scientific physics journal Advanced Materials. Her thesis supervisor is prof. dr. Clemens van Blitterswijk.

Explore further: Researcher discovers new method for creating bone tissue and cartilage tissue

Related Stories

Researcher discovers new method for creating bone tissue and cartilage tissue

July 23, 2014
UT-Doctoral Degree Candidate Anne Leferink has discovered a new method for creating bone tissue and cartilage tissue. By sequencing structures, it is possible to create a larger piece of bone tissue or cartilage tissue than ...

Columbia engineers grow functional human cartilage in lab

April 30, 2014
Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways ...

Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

April 23, 2013
Researchers at Micro Orthopaedics, Zhongnan Hospital of Wuhan University, led by Dr. Ai-xi Yu, have suggested that articular cartilage defects can be repaired by a novel thermo-sensitive injectable hydrogel engineered with ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.