Mouse model for epilepsy, Alzheimer's gives window into the working brain

August 21, 2014, University of Utah Health Sciences

University of Utah scientists have developed a genetically engineered line of mice that is expected to open the door to new research on epilepsy, Alzheimer's and other diseases.

The mice carry a protein marker, which changes in degree of fluorescence in response to different calcium levels. This will allow many cell types, including cells called astrocytes and microglia, to be studied in a new way.

"This is opening up the possibility to decipher how the works," said Petr Tvrdik, Ph.D., a research fellow in human genetics and a senior author on the study.

The research was published Aug. 14, 2014, in Neuron, a world-leading neuroscience journal. The work is the result of a three-year study involving multiple labs connected with The Brain Institute at the University of Utah. The lead author is J. Michael Gee, who is pursuing both a medical degree and a graduate degree in bioengineering at the university.

"We're really in the era of team science," said John White, Ph.D., professor of bioengineering, executive director of the Brain Institute and the study's corresponding author.

With the new mouse line, scientists can use a laser-based fluorescence microscope to study the calcium indicator in the of the living mouse, either when the mouse is anesthetized or awake. Calcium is studied because it is an important signaling molecule in the body and it can reveal how well the brain is functioning.

Using this method, the scientists are essentially creating a window into the working brain to study the interactions between neurons, astrocytes and microglia.

"We believe this will give us new insights for treatments of epilepsy and for new views of how the immune system of the brain works," White said.

About one-third of the 3 million Americans estimated to have epilepsy lack adequate treatment to manage the disease.

Describing a long-standing collaboration with fellow university researcher and professor of pharmacology and toxicology Karen Wilcox, Ph.D., White said, "We believe the glial cells are malfunctioning in . What we're trying to do is find out in what ways astrocytes participate in the disease."

This research is expected to lead to new classes of drugs.

The ability to track calcium changes in microglial cells will also open up the possibility of studying inflammatory diseases of the brain. Every neurological disease, including Multiple Sclerosis and Alzheimer's, appears to include components of inflammation, the scientists said.

"Live imaging and monitoring microglial activity and responses to inflammation was not possible before," said Tvrdik, particularly in living animals. In the past, researchers studied post-mortem tissue or relied on invasive approaches using synthetic dyes.

Explore further: Fight-or-flight chemical prepares cells to shift brain from subdued to alert

More information: "Imaging Activity in Neurons and Glia with a Polr2a-based and Cre-dependent GCaMP5G- IRES-tdTomato Reporter Mouse, Neuron, 2014.

Related Stories

Fight-or-flight chemical prepares cells to shift brain from subdued to alert

June 18, 2014
A new study from The Johns Hopkins University shows that the brain cells surrounding a mouse's neurons do much more than fill space. According to the researchers, the cells, called astrocytes because of their star-shaped ...

Memory relies on astrocytes, the brain's lesser known cells

July 28, 2014
When you're expecting something—like the meal you've ordered at a restaurant—or when something captures your interest, unique electrical rhythms sweep through your brain.

Immune response may cause harm in brain injuries, disorders

July 24, 2014
Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

Researchers discover neuroprotective role of immune cell

July 22, 2014
A type of immune cell widely believed to exacerbate chronic adult brain diseases, such as Alzheimer's disease and multiple sclerosis (MS), can actually protect the brain from traumatic brain injury (TBI) and may slow the ...

New mapping approach lets scientists zoom in and out as the brain processes sound

July 31, 2014
Researchers at Johns Hopkins have mapped the sound-processing part of the mouse brain in a way that keeps both the proverbial forest and the trees in view. Their imaging technique allows zooming in and out on views of brain ...

Molecular imbalance linked to brain tumour seizures

July 14, 2014
Researchers in France may have discovered why some patients with a type of brain tumour have epileptic seizures.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.