Study suggests repurposing anti-depressant medication to target medulloblastoma

August 24, 2014

An international research team reports in Nature Medicine a novel molecular pathway that causes an aggressive form of medulloblastoma, and suggests repurposing an anti-depressant medication to target the new pathway may help combat one of the most common brain cancers in children.

The multi-institutional group, led by scientists at Cancer and Blood Diseases Institute (CBDI) at Cincinnati Children's Hospital Medical Center, publish their results in the journal's online edition on Aug. 24. The researchers suggest their laboratory findings in mouse models of the disease could lead to a more targeted and effective molecular therapy that would also reduce the harmful side effects of current treatments, which include chemotherapy, radiation or surgery.

"Although current treatments improve survival rates, patients suffer severe side effects and relapse tumors carry mutations that resist treatment," said lead investigator Q. Richard Lu, PhD, scientific director of the Brain Tumor Center, part of the CBDI at Cincinnati Children's. "This underscores an urgent need for alternative targeted therapies, and we have identified a potent tumor suppressor that could help a subset of patients with an aggressive form of ."

Using genetically-engineered mice to model human medulloblastoma, the authors identified a gene called GNAS that encodes a protein called Gsa. Gsa kicks off a signaling cascade that researchers found suppresses the initiation of an aggressive form of medulloblastoma driven by a protein called Sonic hedgehog – considered one of the most important molecules in tissue formation and development.

The scientists used an anti-depressant medication called Rolipram – approved for behavioral therapy for use in Europe and Japan – to treat mice that were engineered not to express the GNAS gene. Lack of GNAS allowed aggressive formation of medulloblastoma tumors in neural progenitor cells of the GNAS mutant mice.

Rolipram treatment in the mice elevated levels of a molecule called cAMP, which restored the GNAS-Gsa pathway's tumor suppression function. This caused the tumors to shrink and subside. The study also suggests that elevating cAMP levels in cells enhances the potency of Sonic hedgehog inhibitors, currently being tested in clinical trials to fight tumor growth.

The scientists stressed that a significant amount of additional research is needed before their findings could become directly relevant to clinical treatment. The authors also caution that the effect of raising cAMP levels may depend on the type of cancer, and that laboratory results in mice do not always translate uniformly to humans.

Explore further: Adult cancer drugs show promise against an aggressive childhood brain tumor

More information: The G protein a subunit Gas is a tumor suppressor in Sonic hedgehog-driven medulloblastoma, Nature Medicine, DOI: 10.1038/nm.3666

Related Stories

Adult cancer drugs show promise against an aggressive childhood brain tumor

March 27, 2014
The quest to improve survival of children with a high-risk brain tumor has led St. Jude Children's Research Hospital investigators to two drugs already used to treat adults with breast, pancreatic, lung and other cancers. ...

New approach to treating human brain cancer could lead to improved outcomes

September 25, 2013
A new experimental approach to treating a type of brain cancer called medulloblastoma has been developed by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham). The method targets cancer stem cells—the ...

Study identifies growth factor essential to the most common malignant pediatric brain tumor

February 28, 2013
A multi-institutional team led by Massachusetts General Hospital (MGH) researchers has identified a molecular pathway that appears to be essential for the growth and spread of medulloblastoma, the most common malignant brain ...

New model of childhood brain cancer establishes first step to personalized treatment

February 13, 2012
Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) developed a new mouse model for studying a devastating childhood brain cancer called medulloblastoma. The animal model mimics the deadliest of four ...

Scientists identify genetic blueprint for cancerous tumors of the appendix

May 12, 2014
Using next generation DNA sequencing, Dartmouth scientists have identified potentially actionable mutations in cancers of the appendix. Their study, "Molecular Profiling of Appendiceal Epithelial Tumors Using Massively Parallel ...

Triple therapy revs up immune system against common brain tumor

August 4, 2014
A triple therapy for glioblastoma, including two types of immunotherapy and targeted radiation, has significantly prolonged the survival of mice with these brain cancers, according to a new report by scientists at the Johns ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.