Researchers boost the heart's natural ability to recover after heart attack

October 15, 2014
Fibroblasts (red) express endothelial markers (green), making the heart cells in mice appear yellow. The green blood vessels running horizontally are partly composed of red/yellow cells, suggesting that fibroblasts are incorporated into blood vessels. Credit: Eric Ubil, PhD

Researchers from the UNC School of Medicine have discovered that cells called fibroblasts, which normally give rise to scar tissue after a heart attack, can be turned into endothelial cells, which generate blood vessels to supply oxygen and nutrients to the injured regions of the heart, thus greatly reducing the damage done following heart attack.

This switch is driven by p53, the well-documented tumor-suppressing protein. The UNC researchers showed that increasing the level of p53 in scar-forming cells significantly reduced scarring and improved heart function after heart attack.

The finding, which was published today in the journal Nature, shows that it is possible to limit the damage wrought by heart attacks, which strike nearly one million people in the United States each year. Heart disease accounts for one in four deaths every year.

"Scientists have thought that are terminally differentiated, meaning they can't adopt the fate of other kinds of cells; but our study suggests this may not be entirely true," said Eric Ubil, PhD, a postdoctoral fellow at UNC and first author of the Nature study.

"It appears that injury itself can induce fibroblasts to change into endothelial cells so the heart heals better. We found a drug that could push this process forward, making even more endothelial cells that help form . The results were truly amazing in mice, and it will be exciting to see if people respond in the same way."

After a heart attack, fibroblasts replace damaged heart muscle with . This scarring can harden the walls of the heart and lessen its ability to pump blood throughout the body. Meanwhile, endothelial cells create new blood vessels to improve circulation to the damaged area. However, sometimes these endothelial cells naturally turn into fibroblasts instead, adding to the scarring.

Ubil and his colleagues wondered if the switch ever flipped the other way – could fibroblasts turn into endothelial cells. To explore this idea, they induced heart attacks in mice and then studied the fibroblasts to see if the cells expressed markers characteristic of endothelial cells. To their surprise, almost a third of the fibroblasts in the area of the cardiac injury expressed these endothelial markers. The researchers found that the endothelial cells generated from fibroblasts actually gave rise to functioning blood vessels.

Next, Ubil and colleagues wanted to identify the molecule that triggered the switch. Because a heart attack is such a stressful event, Ubil created a list of genes that were known to be involved in cellular responses to stress. Topping the list was p53, a protein often called the "guardian of the genome" because it causes damaged, out of control cells to commit suicide, or apoptosis, which reduces the likelihood that they will go on to form tumors.

"As luck would have it, that was the first gene I tried, and that was the last gene I tried," said Ubil, who conducted the research as a graduate student in the laboratory of former UNC faculty member and senior study author Arjun Deb, MD.

Ubil found that p53 was "turned on" or overexpressed in the fibroblasts after heart injury and this seemed to regulate fibroblasts becoming endothelial cells. He and colleagues figured that if the p53 protein was responsible for the positive switch, then blocking it in mice would halt the transition from scar-forming cells to blood vessel-forming cells. Their experiments revealed that knocking out the p53 gene in scar-forming cells in adult mice decreased the number of cells making the switch by 50 percent.

Likewise, the researchers rationalized that upping the level of p53 would increase the number of fibroblasts that would turn into endothelial cells. Because p53 is often mutated or lost in , a number of compounds have been designed to increase its levels as a possible anti-cancer treatment. The researchers picked one such experimental drug called RITA – Reactivation of and Induction of Tumor cell Apoptosis – and used it to treat mice for a few days after cardiac injury. The drug had dramatic results, doubling the number of fibroblasts that turned into endothelial cells. That is, instead of just 30 percent of fibroblasts naturally switching into , 60 percent made the switch.

"The treated mice benefited tremendously," Ubil said. "There was such a huge decrease in scar formation. We checked the mice periodically, from three days to fourteen days after treatment. They had more blood vessels at the site of injury, and their heart function was better. By increasing the number of blood vessels in the injury region, we were able to greatly reduce the effects of the ."

Ubil said his study shows that this could be a novel strategy for treating heart attacks. However, he cautioned that any treatments based on the discovery outlined in Nature are many years away.

"But our work shows it's possible to change the fate of scar-forming cells in the heart, and this could potentially benefit people who have heart attacks," Ubil said.

Deb added, "We are also currently investigating whether such an approach could be applied for treating scarring in other organs after injury."

Explore further: Researchers find that coronary arteries hold heart-regenerating cells

More information: Nature DOI: 10.1038/nature13826

Related Stories

Researchers find that coronary arteries hold heart-regenerating cells

August 20, 2014
Endothelial cells residing in the coronary arteries can function as cardiac stem cells to produce new heart muscle tissue, Vanderbilt University investigators have discovered.

Scarring a necessary evil to prevent further damage after heart attack

November 15, 2011
After a heart attack, the portions of the heart damaged by a lack of oxygen become scar tissue. Researchers have long sought ways to avoid this scarring, which can harden the walls of the heart, lessen its ability to pump ...

Help for a scarred heart: Scarring cells turned to beating muscle

February 12, 2014
Poets and physicians know that a scarred heart cannot beat the way it used to, but the science of reprogramming cells offers hope—for the physical heart, at least.

Fibroblasts could offer alternative to heart transplants

April 24, 2014
(Medical Xpress)—Fibroblasts, cells long thought to be boring and irrelevant, could offer an alternative to heart transplants for patients with heart disease.

Fibroblasts reprogrammed into functioning heart cells in mice

April 23, 2012
(HealthDay) -- Cells that normally form scar tissue after a heart attack can be reprogrammed into functional heart cells in mice, according to an experimental study published online April 18 in Nature.

Researchers develop new cells meant to form blood vessels, treat peripheral artery disease

October 12, 2014
Researchers have developed a technique to jump-start the body's systems for creating blood vessels, opening the door for potential new treatments for diseases whose impacts include amputation and blindness.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.