Study reinterprets decades of data about glutathione

October 16, 2014 by Stephanie Dutchen, Harvard Medical School
Study reinterprets decades of data about glutathione
Credit: EdStock/iStock

In the tiny Wall Streets of our cells, proteins engage in a brisk electron trade. Some sell, becoming oxidized, and some buy, becoming reduced.

Research has indicated that balancing this market is critical; too much has been linked to age-related diseases including cancer, Alzheimer's, Parkinson's and diabetes.

It would make sense, then, that cells need a buffer to help stabilize oxidation. For more than 50 years, scientific literature has avowed that the buffer is a substance called .

A new study from Harvard Medical School just turned that dogma on its head.

Based on studies of the microscopic worm Caenorhabditis elegans, the team reported in Nature Communications that glutathione is actually the opposite of a buffer: It serves as a highly sensitive dial that can turn up or turn down oxidation based on the inputs it receives. Rather than stabilizing cost, the glutathione system adjusts the price of electrons based on subtle fluctuations in the market.

"Instead of being in a comfortable buffer zone, cells are right at the knife's edge," said Javier Apfeld, HMS instructor in systems biology and co-senior author of the paper. "This was really unexpected."

After digesting their surprising discovery, the authors went a step further and argued that cells may not need an oxidation buffer at all.

"Protein oxidation has been considered a type of damage to be avoided. Our results suggest that protein oxidation is instead a system of information flow," said Catalina Romero, research fellow in systems biology at HMS and first author of the paper. "Rather than repairing damage, glutathione may be communicating change."

What may be happening in diseases of dysregulated oxidation, the authors proposed, is that glutathione relays miniscule changes too loudly. "It's yelling things that wouldn't normally be audible in the cell," Romero said.

This study "provides a framework to reinterpret decades of data" about glutathione, said Apfeld. "It helped us open our eyes. In retrospect, this role for glutathione is obvious."

"This is very thought-provoking science that may necessitate revisiting the perspective offered in some textbooks," said Walter Fontana, HMS professor of systems biology and co-senior author of the paper.

The findings could have ramifications for the study and treatment of oxidation in age-related diseases and even the use of antioxidant supplements.

Until recently, researchers didn't have tools to examine glutathione's role in regulating oxidation in multicellular creatures. The team, which also included HMS instructor in Debora Marks, was able to conduct its experiments because of new fluorescent sensor technology that made it possible to measure protein oxidation with "delightful" spatial and temporal resolution in individual live organisms.

They found that oxidation varied widely from worm to worm and even between and within tissues in individual worms. Now they're investigating how such spatial patterns might correlate with aging.

Although the study was based on C. elegans, the team believes the findings will be relevant for human biology since the worms share the same glutathione system as organisms from bacteria to humans.

"We're just beginning to understand when you want to be oxidized and when you want to be reduced, and which proteins are doing the work," said Apfeld. "We've just learned one important rule about how this system works."

Explore further: Live cell imaging reveals distinct alterations of subcellular glutathione potentials

More information: "Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans." Nature Communications 5, Article number: 5020 DOI: 10.1038/ncomms6020

Related Stories

Live cell imaging reveals distinct alterations of subcellular glutathione potentials

April 17, 2014
In the April issue of Experimental Biology and Medicine a multidisciplinary research team led by Drs. Rex Gaskins and Paul Kenis in the Institute of Genomic Biology (IGB) on the campus of the University of Illinois Urbana-Champaign ...

Research shows oral supplement increases body's storage of antioxidant

April 23, 2013
(Medical Xpress)—Oral supplementation of glutathione is effective in increasing the body's stores of the antioxidant, said Penn State College of Medicine researchers in study results presented at a conference today (April ...

Recommended for you

Lab-on-a-chip delivers critical immunity data for vulnerable populations

April 25, 2018
For millions of displaced people around the world—many of them refugees, living in temporary shelters under crowded conditions—an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 ...

Want new medicines? You need fundamental research

April 25, 2018
Would we be wise to prioritize "shovel-ready" science over curiosity-driven, fundamental research programs? Would that set the stage for the discovery of more new medicines over the long term?

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

'Incompatible' donor stem cells cure adult sickle cell patients

April 25, 2018
Doctors at the University of Illinois Hospital have cured seven adult patients of sickle cell disease, an inherited blood disorder primarily affecting the black community, using stem cells from donors previously thought to ...

Research explains link between exercise and appetite loss

April 24, 2018
Ever wonder why intense exercise temporarily curbs your appetite? In research described in today's issue of PLOS Biology, Albert Einstein College of Medicine researchers reveal that the answer is all in your head—more specifically, ...

Mammary stem cells challenge costly bovine disease

April 24, 2018
Mastitis is the most expensive disease in the dairy industry. Each clinical case can cost a dairy farmer more than $400 and damages both the cow's future output as well as her comfort.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.