Scientists find first evidence of 'local' clock in the brain

November 14, 2014 by Sam Wong

Researchers have gained fresh insights into how 'local' body clocks control waking and sleeping.

All animals, from ants to humans, have internal 'circadian' clocks that respond to changes in light and tell the body to rest and go to sleep, or wake up and become active.

A found in part of the brain called the suprachiasmatic nucleus (SCN) is thought to synchronise lots of 'local' clocks that regulate many aspects of our metabolism, for example in the liver. But until now scientists have not had sufficient evidence to demonstrate the existence of these local clocks in the brain or how they operate.

In a new study looking at , researchers including Professors Bill Wisden and Nick Franks at Imperial College London and Dr Mick Hastings' group at the MRC Laboratory of Molecular Biology in Cambridge have investigated a local clock found in another part of the brain, outside the SCN, known as the tuberomamillary nucleus (TMN). This is made up of histaminergic neurons, which are inactive during sleep, but release a compound called histamine during waking hours, which awakens the body. 

The researchers deleted a well-known 'clock' gene, Bmal1, from the histaminergic neurons and found that the mice produced higher levels of the enzyme that makes histamine and were awake for much longer periods than usual. The mice also experienced a more fragmented sleep, a shallower depth of sleep, and much slower recovery after a period of sleeplessness.

This finding indicates that there is an active clock-like mechanism in histaminergic neurons, providing evidence for the first time that local clocks work alongside the master SCN clock. The results are reported in the journal Current Biology.

Senior researcher Professor Bill Wisden from the Department of Life Sciences at Imperial College London said: "Getting enough good quality sleep is crucial – it helps keep us mentally and physically healthy, as well as being a key factor in having a good quality of life. A lot of people would love to have more a concentrated and restful night's sleep, but at the moment we still don't know enough about exactly why we fall and stay asleep. Our work with mice suggests that local play a key role in ensuring their sleeping and waking processes work properly. When a local clock was disrupted, their whole sleep and wake system malfunctioned. Ultimately, understanding local clocks better might enable us to target them to help people have a better night's sleep."

Lead author Dr Xiao Yu also from the Department of Life Sciences at Imperial College London said: "It is really exciting to find significant evidence of a local body clock. Now we know that the master clock is not working alone, but relies on lots other of helpers to wake up our whole body."

In the study, the researchers used EEG (electroencephalography) analysis to compare brain activity and sleep-wake cycles of mice bred without the Bmal1 gene in the TMN with that of mice that had the gene.

Results showed that deleting Bmal1 destabilised the histamine system, with the mice making more of the histamine-producing enzyme histidine decarboxylase (HDC) than normal, at the wrong time of day. Mice are normally nocturnal, but this pattern was disrupted.

Due to the higher levels of HDC, the mice without Bmal1 were much more excited and significantly more active than typical mice. This meant the mice had a more fragmented sleep.

The researchers also tested how well the mice were able to recover from periods without sleep. The mice were placed in a cage with lots of plastic tubes and pieces of paper to play with, which discouraged them from sleeping. After five hours of playing, the mice without Bmal1 had a recovery sleep that was six hours shorter than that of the , as their HDC levels remained high and kept them in a more wakeful state.

Results showed that lack of sleep also affects memory, as Bmal1-deficient mice had poorer performance in an object recognition test. In the test mice are shown a series of new objects, which they sniff and explore to uncover what they are. Mice will only explore an object if it is entirely new to them. Bmal1-deficient mice were unable to decipher between new and old objects and were excited by all objects equally, showing that they had forgotten what they had already seen.

The scientists are now looking to investigate whether there is direct communication between the master SCN and local clocks, to find out how the SCN gives and receives -wake messages.

Explore further: Adjusting your body clock when the time changes

More information: X. Yu et al. 'Circadian factor Bmal1 in histaminergic neurons regulates sleep architecture'. Current Biology, December 2014. DOI:

Related Stories

Adjusting your body clock when the time changes

November 4, 2014
As we reset our clocks and watches for daylight saving time, it's a good opportunity to think about our body clocks as well. Our bodies naturally operate on 24-hour cycles, called circadian rhythms, that respond to external ...

Clock gene dysregulation may explain overactive bladder

October 30, 2014
If you think sleep problems and bladder problems are a fact of life in old age, you may be right. A new report appearing in the November 2014 issue of The FASEB Journal, shows that our sleep-wake cycles are genetically connected ...

Researchers pinpoint protein crucial for development of biological rhythms in mice

April 24, 2014
Johns Hopkins researchers report that they have identified a protein essential to the formation of the tiny brain region in mice that coordinates sleep-wake cycles and other so-called circadian rhythms.

Researchers identify gene that helps fruit flies go to sleep

March 13, 2014
In a series of experiments sparked by fruit flies that couldn't sleep, Johns Hopkins researchers say they have identified a mutant gene—dubbed "Wide Awake"—that sabotages how the biological clock sets the timing for sleep. ...

Resetting the circadian clock: Shift workers might want to skip high-iron foods

October 21, 2014
Workers punching in for the graveyard shift may be better off not eating high-iron foods at night so they don't disrupt the circadian clock in their livers.

Recommended for you

Researchers discover spinal cord neurons that inhibit distracting input to focus on task at hand

December 8, 2017
We think of our brain as masterminding all of our actions, but a surprising amount of information related to movement gets processed by our spinal cord.

The mysterious case of the boy missing most of his visual cortex who can see anyway

December 8, 2017
(Medical Xpress)—A team of researchers with Monash University recently gave a presentation at a neuroscience conference in Australia outlining their study of the brain of a seven-year-old boy who was missing most of his ...

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.