The sense of smell uses fast dynamics to encode odors

December 16, 2014, Public Library of Science
Credit: Petr Kratochvil/public domain

Neuroscientists from the John B. Pierce Laboratory and Yale School of Medicine have discovered that mice can detect minute differences in the temporal dynamics of the olfactory system, according to research that will be published on December 16 in the open access journal PLOS Biology.

The research team used light in genetically-engineered mice to precisely control the activity of neurons in the olfactory bulbs in mice performing a discrimination task. This approach to controlling neural activity, called optogenetics, allows for much more precise control over the activity of neurons of the olfactory system than is possible by using chemical odors. The "light-smelling" mice were able to detect differences as small as 13 milliseconds between the dynamics of these "virtual odors".

Because olfactory bulbs exhibit dynamic neural activations in the range of many tens of milliseconds, the 13 millisecond detection limit suggested that mice should be able to discriminate these dynamics. The researchers tested this hypothesis by recording brief "movies" of the dynamic activity in the olfactory bulbs of one group of mice and projecting them back onto the of another group of naïve mice. The naïve mice were indeed able to discriminate between the movies, demonstrating that the neural dynamics of the bulb contain fundamental information about odors.

"This data is very exciting as it shows for the first time that the temporal dynamics of bulbar neural activity are meaningful to the animal", remarked Associate Professor Justus Verhagen, the lead author on the paper. "Before optogenetics arrived as a new tool we had no means to test if this was true, we could read out the dynamic activity but could not impose it back on the brain and ask questions about its role in odor discrimination ".

These new findings build upon earlier evidence that olfactory processing in mice included temporal information about sniffs. "We knew from prior work by the team of Dr. Dima Rinberg that mice could accurately determine when their was stimulated relative to the timing of sniffs. We now know that mice can also obtain this information directly by comparing the timing of activities among neurons. We hence think that the neural population dynamics are important for the sense of smell both independently of and relative to sniffing. Thus, a sniff can be the "start" signal from which the brain begins to analyze the times at which different neurons turn on, but the brain can also do this independently of the sniff by using the earliest neural activations themselves as "start" signals. Combined these mechanisms provide for a very robust means for the brain to use time information. However, we don't yet know how these two forms of temporal information may interact".

Dr. Verhagen's lab is one of several at Yale and the John B. Pierce Laboratory that are studying the neurobiology of food and flavor perception. His lab is unique in applying the power of optogenetics in to study the spatio-temporal capabilities of the olfactory neural circuitry that underlies these vital perceptual functions.

Explore further: A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

More information: Rebello MR, McTavish TS, Willhite DC, Short SM, Shepherd GM, et al. (2014) Perception of Odors Linked to Precise Timing in the Olfactory System. PLoS Biol 12(12): e1002021. DOI: 10.1371/journal.pbio.1002021

Related Stories

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

Map of brain connections provides insight into olfactory system

May 16, 2014
The processing of sensory information in the brain involves a complex network of neural connections specific to each type of sensory input. Much is known about the neural wiring associated with most senses, but the deeper ...

The female nose always knows: Do women have more olfactory neurons?

November 5, 2014
Individuals show great diversity in their ability to identify scents and odors. More importantly, males and females greatly differ in their perceptual evaluation of odors, with women outperforming men on many kinds of smell ...

Scientists sniff out unexpected role for stem cells in the brain

October 13, 2014
For decades, scientists thought that neurons in the brain were born only during the early development period and could not be replenished. More recently, however, they discovered cells with the ability to divide and turn ...

Study shows that mice can identify specific odors amid complex olfactory environments

August 3, 2014
For many animals, making sense of the clutter of sensory stimuli is often a matter or literal life or death.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.