Imaging study finds first evidence of neuroinflammation in brains of chronic pain patients

January 12, 2015, Massachusetts General Hospital
Imaging study finds first evidence of neuroinflammation in brains of chronic pain patients
Images created by averaging PET scan data from chronic pain patients (left) and healthy controls (right) reveals higher levels of inflammation-associated translocator protein (orange/red) in the thalamus and other brain regions of chronic pain patients. Credit: Marco Loggia, PhD, Martinos Center for Biomedical Imaging, Massachusetts General Hospital

A new study from Massachusetts General Hospital (MGH) investigators has found, for the first time, evidence of neuroinflammation in key regions of the brains of patients with chronic pain. By showing that levels of an inflammation-linked protein are elevated in regions known to be involved in the transmission of pain, the study published online in the journal Brain paves the way for the exploration of potential new treatment strategies and identifies a possible way around one of the most frustrating limitations in the study and treatment of chronic pain - the lack of an objective way to measure the presence or intensity of pain.

"Finding increased levels of the translocator protein in regions like the thalamus - the brain's sensory gateway for pain and other stimuli - is important, since we know that this protein is highly expressed in microglia and astrocytes, the immune cells of the central nervous system, when they are activated in response to some pathologic event," says Marco Loggia, PhD, of the MGH-based Martinos Center for Biomedical Imaging, lead author of the report. Demonstrating glial activation in chronic pain suggests that these cells may be a therapeutic target, and the consistency with which we found glial activation in suggests that our results may be an important step towards developing biomarkers for pain conditions."

While numerous studies have clearly associated glial activation with in animal models, none have previously documented glial activation in the brain of humans with chronic pain. The current study initially enrolled 19 patients with chronic lower back pain and 25 healthy control participants. In a subset of 10 patients and 9 pain-free controls - carefully selected from the initial larger group based on sex, age and genetic characteristics - brain imaging studies were conducted with one of the Martinos Center's integrated PET/MR scanners using a new radiopharmaceutical that binds to the translocator protein (TSPO). Loggia and colleagues found that the levels of the protein in the thalamus and other brain regions were significantly higher in patients than in controls. The PET signal increases were so remarkably consistent across participants, Loggia notes, that it was possible to spot which were the patients and which were the controls just by looking at the individual images prior to detailed statistical analysis of the data.

Another interesting finding was that among patient participants, who had been asked to report their current levels of pain during the imaging session, those with the highest levels of TSPO had reported lower levels of pain. Loggia explains, "While upregulation of TSPO is a marker of glial activation, which is an inflammatory state, animal studies have suggested that the protein actually limits the magnitude of glial response after its initiation and promotes the return to a pain-free, pre-injury status. This means that what we are imaging may be the process of trying to 'calm down' after being activated by the pain. Those participants with less pain-related upregulation of TSPO may have a more exaggerated neuroinflammatory response that ultimately leads to more inflammation and pain. While larger studies would be needed to further support this interpretation, this evidence suggests that drugs called TSPO agonists, which intensify the action of TSPO, may benefit pain patients by helping to limit glial activation."

An assistant professor of Radiology at Harvard Medical School, Loggia notes that the ability to image glial activation could identify patients for whom the drugs targeting the process would be most appropriate. Future studies should investigate whether the same glial activation patterns are seen in patients with other forms of or whether particular "glial signatures" may differentiate specific syndromes or pathologic mechanisms.

Explore further: Pleasure and pain brain signals disrupted in fibromyalgia patients

Related Stories

Pleasure and pain brain signals disrupted in fibromyalgia patients

November 5, 2013
New research indicates that a disruption of brain signals for reward and punishment contributes to increased pain sensitivity, known as hyperalgesia, in fibromyalgia patients. Results published in Arthritis & Rheumatism, ...

Blood markers may reveal active spinal degenerative disease

January 8, 2015
(HealthDay)—Serum biomarkers may be a measure for assessment of active degenerative spinal disease in older adults, according to a study published in the November issue of the Journal of the American Geriatrics Society.

Biomarkers ID disease activity in elderly with low back pain

November 13, 2014
(HealthDay)—Serum biomarkers can be used for assessment of active disease in older patients with low back pain, according to a study published online Nov. 3 in the Journal of the American Geriatrics Society.

Women's chronic pain is more complex, more severe

October 24, 2013
(Medical Xpress)—New research from the University of Adelaide has found that chronic pain in women is more complex and harder to treat than chronic pain in men.

Smoking is a pain in the back

November 3, 2014
If you want to avoid chronic back pain, put out the cigarette. A new Northwestern Medicine® study has found that smokers are three times more likely than nonsmokers to develop chronic back pain, and dropping the habit may ...

Using morphine after abdominal surgery may prolong pain, researchers find

November 12, 2013
Using morphine to fight the pain associated with abdominal surgery may paradoxically prolong a patient's suffering, doubling or even tripling the amount of time it takes to recover from the surgical pain, according to researchers ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

24volts
not rated yet Jan 12, 2015
I wonder long the people picked actually have had chronic pain meaning that if it's been going on a long time or only a short time, would that have an effect on the results the researchers ended up with?
mooster75
1 / 5 (1) Jan 13, 2015
Unless they've changed the definition of chronic, I would assume a long time...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.