More evidence that musical training protects the brain

February 2, 2015, Baycrest Centre for Geriatric Care
Credit: Wikipedia.

Scientists have found some of the strongest evidence yet that musical training in younger years can prevent the decay in speech listening skills in later life.

According to a new Canadian study led by the Rotman Research Institute (RRI) at Baycrest Health Sciences, who had musical training in their youth were 20% faster in identifying than their non-musician peers on speech identification tests, a benefit that has already been observed in young people with musical training.

The findings are published in The Journal of Neuroscience.

Among the different cognitive functions that can diminish with age is the ability to comprehend speech. Interestingly, this difficulty can persist in the absence of any measurable hearing loss. Previous research has confirmed that the 's central auditory system which supports the ability to parse, sequence and identify acoustic features of speech - weakens in later years.

Starting formal lessons on a musical instrument prior to age 14 and continuing intense training for up to a decade appears to enhance key areas in the brain that support speech recognition. The Rotman study found "robust" evidence that this brain benefit is maintained even in the older population.

"Musical activities are an engaging form of cognitive brain training and we are now seeing robust evidence of brain plasticity from musical training not just in younger brains, but in older brains too," said Gavin Bidelman, who led the study as a post-doctoral fellow at the RRI and is now an assistant professor at the University of Memphis.

"In our study we were able to predict how well older people classify or identify speech using EEG imaging. We saw a brain-behaviour response that was two to three times better in the older musicians compared to non-musicians peers. In other words, old musicians' brains provide a much more detailed, clean and accurate depiction of the speech signal, which is likely why they are much more sensitive and better at understanding speech."

Bidelman received a GRAMMY Foundation research grant to conduct the study and partnered with senior scientist Claude Alain, assistant director of Baycrest's RRI and a leading authority in the study of age-related differences in auditory cortical activity.

The latest findings add to mounting evidence that not only gives young developing brains a cognitive boost, but those neural enhancements extend across the lifespan into old age when the brain needs it most to counteract cognitive decline. The findings also underscore the importance of music instruction in schools and in rehabilitative programs for older adults.

In this study, 20 healthy older adults (aged 55-75) - 10 musicians and 10 non-musicians - put on headphones in a controlled lab setting and were asked to identify random speech sounds. Some of the sounds were single vowel sounds such as an "ooo" or an "ahhh", others more ambiguous as a mix of two sounds that posed a greater challenge to their auditory processing abilities for categorizing the speech sound correctly.

During the testing cycles, researchers recorded the neural activity of each participant using electroencephalography (EEG). This brain imaging technique measures to a very precise degree the exact timing of the electrical activity which occurs in the brain in response to external stimuli. This is displayed as waveforms on a computer screen. Researchers use this technology to study how the brain makes sense of our complex acoustical environment and how aging impacts cognitive functions.

According to Bidelman and Alain's published paper, the older musicians' brain responses showed "more efficient and robust neurophysiological processing of at multiple tiers of auditory processing, paralleling enhancements reported in younger musicians."

Explore further: Just a few years of early musical training benefits the brain later in life

Related Stories

Just a few years of early musical training benefits the brain later in life

November 5, 2013
Older adults who took music lessons as children but haven't actively played an instrument in decades have a faster brain response to a speech sound than individuals who never played an instrument, according to a study appearing ...

Music training has biological impact on aging process

January 30, 2012
Age-related delays in neural timing are not inevitable and can be avoided or offset with musical training, according to a new study from Northwestern University. The study is the first to provide biological evidence that ...

Speaking a tonal language (such as Cantonese) primes the brain for musical training

April 2, 2013
Non-musicians who speak tonal languages may have a better ear for learning musical notes, according to Canadian researchers.

Science finding is music to the ears

September 13, 2011
A study led by Canadian researchers has found the first evidence that lifelong musicians experience less age-related hearing problems than non-musicians.

Musical training increases blood flow in the brain

May 7, 2014
Research by the University of Liverpool has found that brief musical training can increase the blood flow in the left hemisphere of our brain. This suggests that the areas responsible for music and language share common brain ...

Musical experience offsets some aging effects

May 11, 2011
(Medical Xpress) -- A growing body of research finds musical training gives students learning advantages in the classroom. Now a Northwestern University study finds musical training can benefit Grandma, too, by offsetting ...

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.