Study bolsters 'turbocharged' protein as a promising tool in hemophilia gene therapy

March 12, 2015, Children's Hospital of Philadelphia

Using gene therapy to produce a mutant human protein with unusually high blood-clotting power, scientists have successfully treated dogs with the bleeding disorder hemophilia, without triggering an unwanted immune response. In addition, the "turbocharged" clotting factor protein eliminated pre-existing antibodies that often weaken conventional treatments for people with hemophilia.

"Our findings may provide a new approach to gene therapy for and perhaps other genetic diseases that have similar complications from inhibiting antibodies," said the study leader, Valder R. Arruda, M.D., Ph.D., a hematology researcher at The Children's Hospital of Philadelphia (CHOP).

Arruda and colleagues published their animal study results in the print edition of Blood on March 5.

Hemophilia is an inherited bleeding disorder that famously affected European royal families descended from Queen Victoria. Most commonly occurring in two types, hemophilia A and hemophilia B, the disease impairs the blood's ability to clot, sometimes fatally. When not fatal, severe hemophilia causes painful, often disabling internal bleeding and joint damage.

Doctors treat hemophilia with frequent intravenous infusions of blood clotting proteins called clotting factors, but these treatments are expensive and time-consuming. Moreover, some patients develop inhibiting antibodies that negate the effectiveness of the infusions.

For more than two decades, many research teams, including at CHOP, have investigated gene therapy strategies that deliver DNA sequences carrying genetic code to produce clotting factor in patients. However, this approach has been frustrated by the body's immune response against vectors—the non-disease-causing viruses used to carry the DNA. Those responses, which defeated initial benefits seen in experimental , were dose-dependent: higher amounts of vectors caused more powerful immune responses.

Arruda and colleagues therefore investigated gene therapy that used lower dosages of vector (adeno-associated viral-8 vector, or AAV-8 vector) to produce a more potent clotting factor—a variant protein called FIX-Padua.

Arruda was part of a scientific team in 2009 that discovered FIX-Padua in a young Italian man who had thrombosis, excessive clotting that can dangerously obstruct blood vessels. A mutation produced the mutant clotting factor, called FIX-Padua, named after the patient's city of residence. This was the first mutation in the factor IX gene found to cause thrombosis. All previously discovered FIX mutations lead to hemophilia, the opposite of thrombosis.

FIX-Padua is hyperfunctional—it clots blood 8 to 12 times more strongly than normal, wild-type factor IX. In the current study, the researchers thus needed to strike a balance—to relieve severe hemophilia in dogs, by using a dose strong enough to allow clotting, but not enough to cause thrombosis or stimulate immune reactions. "Our ultimate goal is to translate this approach to humans," said Arruda, "by adapting this variant protein found in one patient to benefit other patients with the opposite disease."

The current study tested the safety of FIX-Padua in three dogs, all with naturally occurring types of hemophilia B very similar to that found in people. Two of the dogs had never been exposed to , and had never developed antibodies. The gene therapy injections changed their hemophilia from severe to mild, with no bleeding episodes for up to two years. They did not develop inhibitory antibodies, nor was there evidence of thrombosis.

The third dog, named Wiley, already had inhibitory antibodies before receiving the gene therapy. Wiley also experienced safe and effective treatment of hemophilia, persisting over a sustained period— three years. The treatment also eradicated the inhibitory antibodies, the first time this occurred in an animal model with pre-existing antibodies.

Another set of preclinical safety studies in mice supported the safety and efficacy of using FIX-Padua. Arruda added that larger studies are needed in dogs with pre-existing inhibitors, to confirm these encouraging early results.

In the meantime, at least one clinical trial is making use of FIX-Padua in adult patients with hemophilia B—at the University of North Carolina at Chapel Hill, under Paul Monahan, M.D. Leaders of a separate trial being planned at Spark Therapeutics in Philadelphia, under Katherine A. High, M.D., are contemplating using FIX-Padua as well.

Explore further: Long-acting clotting agent approved for form of hemophilia

More information: JM Crudele et al,"AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia dogs and mice," Blood, published online Jan. 7, 2015 and in print March 5, 2015. doi.org/10.1182/blood-2014-07-588194

Related Stories

Long-acting clotting agent approved for form of hemophilia

March 31, 2014
The drug Alprolix has been approved by the U.S. Food and Drug Administration as the first long-acting hemophilia B clotting agent, the FDA said in a news release.

Bioengineered protein shows preliminary promise as new therapy for hemophilia

October 23, 2011
A genetically engineered clotting factor that controlled hemophilia in an animal study offers a novel potential treatment for human hemophilia and a broad range of other bleeding problems.

Gene therapy helps patients with hemophilia B

December 13, 2011
(Medical Xpress) -- An experimental gene therapy technique boosted the production of a vital blood clotting factor in six people with hemophilia B, according to new research supported by the National Institutes of Health. ...

Gene therapy provides safe, long-term relief for patients with severe hemophilia B

November 20, 2014
(Medical Xpress)—Gene therapy developed at St. Jude Children's Research Hospital, University College London (UCL) and the Royal Free Hospital has transformed life for men with a severe form of hemophilia B by providing ...

New treatment approved for rare form of hemophilia

October 24, 2014
(HealthDay)—Obizur (antihemophilic factor recombinant) has been approved to treat a rare, non-inherited form of hemophilia in adults.

Empty decoys divert antibodies from neutralizing gene therapy in cell, animal studies

July 17, 2013
Gene therapy researchers have produced a bioengineered decoy that fools the immune system and prevents it from mistakenly defeating the benefits delivered by a corrective gene. The decoy was effective in animal studies, and ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.