Researchers identify control mechanism for glutamine uptake in breast cancer cells

March 10, 2015, Sanford-Burnham Medical Research Institute
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have discovered a mechanism that explains why some breast cancer tumors respond to specific chemotherapies and others do not. The findings highlight the level of glutamine, an essential nutrient for cancer development, as a determinant of breast cancer response to select anticancer therapies, and identify a marker associated with glutamine uptake, for potential prognosis and stratification of breast cancer therapy.

"Our study indicates that a protein called RNF5 determines breast cancer response to paclitaxel, one of the most common chemotherapy drugs," said Ze'ev Ronai, Ph.D., scientific director of Sanford-Burnham's La Jolla campus. "Paclitaxel belongs to a class of drugs called taxanes that work by triggering a stress response in cells that in turn promotes an interaction between RNF5 and uptake proteins. We found that this interaction causes degradation of the glutamine carrier proteins, leading to an insufficient supply of glutamine and the sensitization of breast cancer tumors to death."

The study results were published in today's online edition of Cancer Cell.

For some time researchers have known that many tumor cell types are dependent on glutamine for growth and survival, but didn't know how glutamine uptake was regulated. The new findings demonstrate the importance of RNF5 in the control of glutamine uptake, and in antagonizing tumor development. The findings also suggest that testing tumors for RNF5 and glutamine carrier protein levels, such as SLC1A5, may be used to identify patients best suited to taxanes-based therapy.

"Not all tumors are equipped to respond to paclitaxel therapy," said Ronai. "Using a cohort of more than 500 breast cancer patient samples, we found that only 30 percent of tumors exhibit high levels of RNF5 and low levels of glutamine carrier proteins—the optimal profile for response to paclitaxel."

"Understanding these types of cell mechanisms and tumor characteristics that determine the response to anticancer drugs can lead to better patient stratification as well as improved therapy approaches," said Gordon Mills, M.D., Ph.D., chairman of the Department of Systems Biology at MD Anderson Cancer Center, 2013 recipient of the Susan B. Komen Brinker Award for contributions to breast cancer research, and co-author of the study. "The opportunity to identify and target key pathways involved in the behavior of has the potential to both increase efficacy and decrease toxicity of therapy."

"We also used this patient cohort to test the predictive value of measuring levels of glutamine carrier proteins as a prognostic marker," said Ronai. Our results indicate that these proteins are an outstanding marker of patient outcome, as good as currently used markers."

"We have started screening for inhibitors of glutamine carrier proteins as a potential new target for treatment," said Ronai, who is also examining the mechanism for glutamine control in other tumor types.

Explore further: Study reveals how cancer cells thrive in oxygen-starved tumors

Related Stories

Study reveals how cancer cells thrive in oxygen-starved tumors

February 4, 2014
A new study identifies the molecular pathway that enables cancer cells to grow in areas of a tumor where oxygen levels are low, a condition called hypoxia.

Glutamine ratio is key ovarian cancer indicator

May 5, 2014
A Rice University-led analysis of the metabolic profiles of hundreds of ovarian tumors has revealed a new test to determine whether ovarian cancer cells have the potential to metastasize, or spread to other parts of the body. ...

Study find loss of certain protein is associated with poor prognosis in breast, lung cancer

January 30, 2015
Moffitt Cancer Center researchers have found that breast and lung cancer patients who have low levels of a protein called tristetraprolin (TTP) have more aggressive tumors and a poorer prognosis than those with high levels ...

How cancer cells rewire their metabolism to survive

January 31, 2013
Cancer cells need food to survive and grow. They're very good at getting it, too, even when nutrients are scarce. Many scientists have tried killing cancer cells by taking away their favorite food, a sugar called glucose. ...

Toughest breast cancer may have met its match

December 8, 2014
Triple-negative breast cancer is as bad as it sounds. The cells that form these tumors lack three proteins that would make the cancer respond to powerful, customized treatments. Instead, doctors are left with treating these ...

Scientists find potential loophole in pancreatic cancer defenses

March 27, 2013
Dana-Farber Cancer Institute scientists and colleagues have discovered that pancreatic cancer cells' growth and spread are fueled by an unusual metabolic pathway that someday might be blocked with targeted drugs to control ...

Recommended for you

Scientists trained a computer to classify breast cancer tumors

November 19, 2018
Using technology similar to the type that powers facial and speech recognition on a smartphone, researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have trained a computer to analyze breast ...

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

New drug discovery could halt spread of brain cancer

November 19, 2018
The tissues in our bodies largely are made of fluid. It moves around cells and is essential to normal body function.

Use genetic data to predict the best time of day to give radiotherapy to breast cancer patients, say researchers

November 19, 2018
A new clinical study led by the University of Leicester and conducted in the HOPE clinical trials facility at Leicester's Hospitals has revealed the pivotal role that changing the time of day that a patient receives radiotherapy ...

New blood test detects early stage ovarian cancer

November 19, 2018
Research on a bacterial toxin first discovered in Adelaide has led to the development a new blood test for the early diagnosis of ovarian cancer—a disease which kills over 1000 Australian women and 150,000 globally each ...

New dual-action cancer-killing virus

November 19, 2018
Scientists have equipped a virus that kills carcinoma cells with a protein so it can also target and kill adjacent cells that are tricked into shielding the cancer from the immune system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.