Study of thousands of brains reveals tau as driver of Alzheimer's disease

March 24, 2015
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

By examining more than 3,600 postmortem brains, researchers at Mayo Clinic's campuses in Jacksonville, Florida, and Rochester, Minnesota, have found that the progression of dysfunctional tau protein drives the cognitive decline and memory loss seen in Alzheimer's disease. Amyloid, the other toxic protein that characterizes Alzheimer's, builds up as dementia progresses, but is not the primary culprit, they say.

The findings, published in Brain, offer new and valuable information in the long and ongoing debate about the relative contribution of amyloid and to the development and progression of cognitive dysfunction in Alzheimer's, says the study's lead author, Melissa Murray, Ph.D., a neuroscientist at Mayo Clinic in Jacksonville.

The findings also suggest that halting toxic tau should be a new focus for Alzheimer's treatment, the researchers say.

"The majority of the Alzheimer's research field has really focused on amyloid over the last 25 years," Dr. Murray says. "Initially, patients who were discovered to have mutations or changes in the amyloid gene were found to have severe Alzheimer's pathology—particularly in increased levels of amyloid. Brain scans performed over the last decade revealed that amyloid accumulated as people progressed, so most Alzheimer's models were based on amyloid toxicity. In this way, the Alzheimer's field became myopic."

But researchers at Mayo Clinic were able to simultaneously look at the evolution of amyloid and tau using neuropathologic measures. "Imagine looking at the rings of a tree—you can identify patterns, like the changing seasons and the aging of the tree, when viewing the tree's cross-section," Dr. Murray says. "Studying brains at different stages of Alzheimer's gives us a perspective of the cognitive impact of a wide range of both amyloid and tau severity, and we were very fortunate to have the resource of the Mayo bank, in which thousands of people donated their postmortem brains, that have allowed us to understand the changes in tau and amyloid that occur over time."

"Tau can be compared to railroad ties that stabilize a train track that brain cells use to transport food, messages and other vital cargo throughout neurons," Dr. Murray says. "In Alzheimer's, changes in the tau protein cause the tracks to become unstable in neurons of the hippocampus, the center of memory. The abnormal tau builds up in neurons, which eventually leads to the death of these neurons. Evidence suggests that abnormal tau then spreads from cell to cell, disseminating pathological tau in the brain's cortex. The cortex is the outer part of the brain that is involved in higher levels of thinking, planning, behavior and attention—mirroring later behavioral changes in Alzheimer's patients."

"Amyloid, on the other hand, starts accumulating in the outer parts of the cortex and then spreads down to the hippocampus and eventually to other areas," she says. "Our study shows that the accumulation of amyloid has a strong relationship with a decline in cognition. When you account for the severity of tau pathology, however, the relationship between amyloid and cognition disappears—which indicates tau is the driver of Alzheimer's," Dr. Murray says.

Amyloid brain scanning has been used for only about a decade, and "so there are still many unanswered questions about what it is measuring," she adds. "Investigating what brain pathology underlies the amyloid brain scanning threshold indicative of Alzheimer's can only be addressed in patients who underwent scanning and donated their brain for research."

The study was conducted in two parts. Researchers at Mayo Clinic in Florida examined 3,618 brains in its postmortem brain bank, of which 1,375 brains were Alzheimer's confirmed. These patients died at different ages and different stages of dementia, providing a valuable timeline into disease progression.

The researchers used recommended scoring systems to examine the evolution of amyloid and tau in dissected brain tissue. They found that the severity of tau, but not amyloid, predicted age onset of cognitive decline, disease duration and mental deterioration.

The second part of the study was conducted with their collaborators at Mayo Clinic in Rochester. Together the team examined amyloid taken of patients prior to death and compared the scans to measures of tau and amyloid brain pathology.

The investigators found that the signal from amyloid brain scans corresponded with amyloid pathology specific to the brain and not amyloid found in vessels, and did not correspond to tau pathology. The brains of some participants had amyloid visible at pathology that did not reach the threshold for what would be found in Alzheimer's brain scans. This is important, as amyloid can be found in brains of older individuals who have not experienced , researchers say.

"Our findings highlight the need to focus on tau for therapeutics, but it also still indicates that the current method of amyloid brain scanning offers valid insights into tracking Alzheimer's," Dr. Murray says. "Although tau wins the 'bad guy' award from our study's findings, it is also true that amyloid brain scanning can be used to ensure patients enrolling for clinical trials meet an amyloid threshold consistent with Alzheimer's—in lieu of a marker for tau."

Explore further: New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

Related Stories

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Alzheimer amyloid clumps found in young adult brains

March 2, 2015
Amyloid—an abnormal protein whose accumulation in the brain is a hallmark of Alzheimer's disease—starts accumulating inside neurons of people as young as 20, a much younger age than scientists ever imagined, reports a ...

New brain protein tied to Alzheimer's disease

July 16, 2014
Scientists have linked a new protein to Alzheimer's disease, different from the amyloid and tau that make up the sticky brain plaques and tangles long known to be its hallmarks.

Sleep disturbance linked to amyloid in brain areas affected by Alzheimer's disease

December 9, 2014
Healthy, elderly research participants who report being more sleepy and less rested have higher levels of amyloid deposition in regions of the brain that are affected in Alzheimer's disease, according to a report presented ...

Fluorescent compounds allow clinicians to visualize Alzheimer's disease as it progresses

September 18, 2013
What if doctors could visualize all of the processes that take place in the brain during the development and progression of Alzheimer's disease? Such a window would provide a powerful aid for diagnosing the condition, monitoring ...

Study examines memory and effects on the aging brain

March 16, 2015
A study of brain aging finds that being male was associated with worse memory and lower hippocampal volume in individuals who were cognitively normal at baseline, while the gene APOE ?4, a risk factor for Alzheimer disease, ...

Recommended for you

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

Biomarker may predict early Alzheimer's disease

November 10, 2017
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a peptide that could lead to the early detection of Alzheimer's disease (AD). The discovery, published in Nature Communications, may ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

erin111
5 / 5 (1) Mar 24, 2015
Year after the year Congress cuts money for the research. Private donors account for about 10% of money spend on research, the rest comes from the federal (the largest part) and state governments. I wouldn't be surprised if Dr. Murray will lose her grants (in private Universities it = lose the job) soon. The number of excellent scientists with publications in top journals in the field e.g. of cardiology and diabetes, who left Johns Hopkins University because of no NIH funding is staggering, This happen while banks show steady 10% increase in profits year after the year. American Science is DYING. This may be one of the last articles of this kind. It bases on the research paid by federal grands years ago.
neversanever
not rated yet Mar 24, 2015
"Our findings highlight the need to focus on tau for therapeutics". (EG Drugs) How about FOR PREVENTION or for a CURE for a change???
SciTechdude
not rated yet Mar 24, 2015
A cure or prevention is what you use Therapeutics for.
cak
not rated yet Mar 29, 2015
This press release mentions cognitive impairment and memory loss due to Alzheimer's but not physical frailty. My understanding, from a study I read in 2008, is that Alzheimer's manifests in three ways. Most commonly, Alzheimer's is seen as causing cognitive impairment and memory loss. It has also been discovered that physical frailty can also often be associated with the dementia of Alzheimer's. Not only that, but some people were found, in autopsy, to have the typical plaques of Alzheimer's but without the demential, yet they suffered the physical frailty typical of Alzheimer's.

http://www.ncbi.n...2676981/

I don't know what if any further work on this might have been done since then, but it seems like it would be desirable to consider the aspect of physical frailty in relation to this new discovery about the tau proteins.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.