Asian family research answers questions on fatty acid in brain

May 25, 2015, University of Exeter
The difference between a brain with a normal Mfsd2a gene and a brain with a mutated Mfsd2a gene. Credit: Guemez-Gamboa et al./ Nature Genetics

New research conducted in a rural community in Pakistan highlights the crucial role that essential fatty acids play in human brain growth and function.

A team co-led by the University of Exeter, working with experts in Singapore, has published findings in Nature Genetics which show that mutations in the protein Mfsd2a cause impaired brain development in humans. Mfsd2a is the transporter in the brain for a special type of fat called lysophosphatidylcholines (LPCs)—which are composed of essential like omega-3. This shows the crucial role of these fats in human brain growth and function.

The study was funded in the UK by the Medical Research Council and the Newlife Foundation for Disabled Children. Professor Andrew Crosby, from the University of Exeter medical School, who co-led the study, said: "This exciting finding teaches us about the crucial role that certain special fats in our blood play in development. It tells us which types of fats are important, and teaches us how the brain absorbs them. Although we discovered the gene in families from Pakistan, there will be people elsewhere in the world who also have this condition, and others like it. These findings provide us with a new focus for the potential treatment of these neurological disorders in the future."

The team worked with members from a large family from a village in North Pakistan, who all descend from the same lineage, and share common features in their DNA. Many of these family members inherited the same genetic mutation in the MFSD2A gene, which the research team showed impairs gene function, rather than destroying it. Individuals who inherited two copies of the gene mutation were found to have microcephaly (small head size), progressive intellectual disability, limb stiffness and absent speech.

One important finding of the study stemmed from the availability of patient blood plasma samples, which permitted biochemical studies in close collaboration with the study co-lead Dr David Silver from Duke-NUS Graduate Medical School Singapore. This pinpointed the crucial role of MFSD2A as the main transporter of to the brain.

Explore further: Researchers discover how DHA omega-3 fatty acid reaches the brain

More information: A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome, DOI: 10.1038/ng.3313

Related Stories

Researchers discover how DHA omega-3 fatty acid reaches the brain

May 14, 2014
It is widely believed that DHA (docosahexaenoic acid) is good for your brain, but how it is absorbed by the brain has been unknown. That is - until now. Researchers from Duke-NUS Graduate Medical School Singapore (Duke-NUS) ...

Omega-3 fatty acids enhance cognitive flexibility in at-risk older adults

May 19, 2015
A study of older adults at risk of late-onset Alzheimer's disease found that those who consumed more omega-3 fatty acids did better than their peers on tests of cognitive flexibility—the ability to efficiently switch between ...

Omega-3 fatty acids and vitamin D may control brain serotonin

February 26, 2015
Although essential marine omega-3 fatty acids and vitamin D have been shown to improve cognitive function and behavior in the context of certain brain disorders, the underlying mechanism has been unclear. In a new paper published ...

Scientists discover gene critical for proper brain development

December 19, 2014
Scientists at A*STAR's Institute of Medical Biology (IMB) and Institute of Molecular and Cellular Biology (IMCB) have identified a genetic pathway that accounts for the extraordinary size of the human brain. The team led ...

Genetic adaptation of fat metabolism key to development of human brain

April 12, 2012
About 300 000 years ago humans adapted genetically to be able to produce larger amounts of Omega-3 and Omega-6 fatty acids. This adaptation may have been crucial to the development of the unique brain capacity in modern humans. ...

Gene mutation discovery could explain brain disorders in children

June 10, 2014
Researchers have discovered that mutations in one of the brain's key genes could be responsible for impaired mental function in children born with an intellectual disability.

Recommended for you

Early life experiences influence DNA in the adult brain

March 22, 2018
In the perennial question of nature versus nurture, a new study suggests an intriguing connection between the two. Salk Institute scientists report in the journal Science that the type of mothering a female mouse provides ...

Study reveals startlingly different tissue sensitivities to cancer-driving genes

March 22, 2018
New research led by Harvard Medical School and Brigham and Women's Hospital has unmasked hundreds of cancer-driving genes and revealed that different tissue types have shockingly variable sensitivities to those genes.

Does genome sequencing increase downstream costs?

March 22, 2018
As genome sequencing enters the clinic, fears have arisen about its potential to motivate follow-up testing and ongoing screening that could drastically increase health care spending. But few studies have quantified the downstream ...

First 'non-gene' mutations behind neurodevelopmental disorders discovered

March 21, 2018
In the largest study of its kind, genetic changes causing neurodevelopmental disorders have been discovered by scientists at the Wellcome Sanger Institute and their collaborators in the NHS Regional Genetics services. The ...

Two genes likely play key role in extreme nausea and vomiting during pregnancy

March 21, 2018
Most women experience some morning sickness during pregnancy, but about 2 percent of pregnant women experience a more severe form of nausea and vomiting.

Scientists identify genes that could inform novel therapies for EBV-related cancers

March 20, 2018
VCU Massey Cancer Center researchers have identified two genes that are responsible for governing the replication of the Epstein-Barr virus, an infection that drives the growth of several types of cancer. The discovery could ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.