Ovarian cancer-specific markers set the stage for early diagnosis, personalized treatments

May 25, 2015
Intermediate magnification micrograph of a low malignant potential (LMP) mucinous ovarian tumour. H&E stain. The micrograph shows: Simple mucinous epithelium (right) and mucinous epithelium that pseudo-stratifies (left - diagnostic of a LMP tumour). Epithelium in a frond-like architecture is seen at the top of image. Credit: Nephron /Wikipedia. CC BY-SA 3.0

Ovarian cancer is notoriously difficult to diagnose and treat, making it an especially fatal disease. Researchers at University of California, San Diego School of Medicine and Moores Cancer Center have now identified six mRNA isoforms (bits of genetic material) produced by ovarian cancer cells but not normal cells, opening up the possibility that they could be used to diagnose early-stage ovarian cancer. What's more, several of the mRNA isoforms code for unique proteins that could be targeted with new therapeutics. The study is published the week of May 25 by the Proceedings of the National Academy of Sciences.

"We were inspired by many studies aimed at using DNA to detect cancer," said first author Christian Barrett, PhD, bioinformatics expert and project scientist in the UC San Diego School of Medicine Institute for Genomic Medicine. "But we wondered if we could instead develop an detection test based on tumor-specific mRNA that has disseminated from cancer cells to the cervix and can be collected during a routine Pap test."

While DNA carries all the instructions necessary for life, its actual sequence contains much more than just the genes that code for proteins. In contrast, mRNAs are complementary copies of just the genes. They carry the recipe for every protein that the cell will produce from the nucleus to the cytoplasm, where cellular machinery can read the recipe and build the corresponding proteins. According to the authors of this study, the advantage of using cancer mRNA for diagnosis rather than DNA is sheer number—a cancer cell might harbor just one or a few copies of a DNA mutation, but mRNA variants can occur in hundreds to thousands of copies per cell.

To determine if mRNAs can be used to distinguish ovarian from normal cells, the team developed a custom bioinformatics algorithm and used it to mine two large public databases of genetic information—The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) program, both sponsored by the National Institutes of Health. TCGA is a catalog of RNA and DNA from 500 tumors covering many cancer types, while GTEx is a database of RNA and DNA from normal tissue samples. From these, the researchers were able to analyze mRNA sequence data from 296 ovarian cancers and 1,839 normal tissue samples.

Using this bioinformatics approach, the researchers identified six mRNA isoform molecules that have the tumor specificity required for an diagnostic of ovarian cancer. They also validated their digital results in the real world using RT-quantitative PCR, a gene amplifying technique, to detect the same ovarian cancer-specific mRNA molecules in lab-grown cells.

Beyond their diagnostic potential, some of the mRNA isoforms identified in this study could also act as new therapeutic targets. These mRNA isoforms are predicted to encode proteins with unique amino acid sequences, which might allow them to be specifically targeted with certain therapeutics, such as monoclonal antibodies or T-cell-based vaccines. What's more, the ovarian cancer-specific mRNA isoforms themselves could also be targeted with new therapeutic drugs.

"Our experimental findings were made in a laboratory and were performed on from cell lines," said study co-author Cheryl Saenz, MD, a clinical professor of reproductive medicine who specializes in treating gynecologic cancers. "Clinical trials will need to be conducted on women to confirm the presence of these markers in women that we know have cancer, as well as to document the absence of the markers in women that do not have ovarian cancer."

The authors acknowledge a few limitations to their approach, including technical limitations in detecting mRNA isoforms, a shortage of normal ovarian and fallopian tube control samples and the possibility that tumor cells that disseminate to the cervix may not genetically act the same as the primary tumor.

Still, based on these promising initial results, the authors recommend expanding their process for identifying tumor-specific mRNA isoforms to the 30 additional tumor types for which sufficient amounts of RNA sequence already exist.

Iris and Matthew Strauss, San Diego-based philanthropists who helped fund the study, are also excited by the promise this finding holds. "We created the Iris and Matthew Strauss Center for Early Detection of Ovarian Cancer in memory of our daughter, Stefanie Dawn Strauss," said Iris Lynn Strauss. "To further honor our daughter, we provided support for this study in an effort to help other women obtain early detection from this dreadful and deadly disease."

Explore further: Study seeks earlier ovarian cancer detection

More information: Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy, Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1508057112

Related Stories

Study seeks earlier ovarian cancer detection

April 20, 2015
Successful ovarian cancer treatment often relies on catching it early. A study at The University of Texas MD Anderson Cancer Center may help point to a new method for women at risk.

Study finds biomarker may boost ovarian cancer chemotherapy response

May 20, 2015
A molecule that helps control gene expression may play a role in controlling chemotherapy resistance among patients with the most common form of ovarian cancer.

Mesothelial cells promote ovarian cancer metastasis

September 9, 2014
Less than half of the women diagnosed with ovarian cancer will survive beyond 5 years. Ovarian cancer readily spreads to abdominal organs, which are covered by a layer of cells called the mesothelium. Ovarian cancer cells ...

Survival improving for women with ovarian cancer

May 12, 2015
(HealthDay)—Women diagnosed with ovarian cancer are now much more likely to survive the disease than they were several decades ago, according to research published online May 6 in Obstetrics & Gynecology.

Resistance is futile: Researchers identify gene that mediates cisplatin resistance in ovarian cancer

April 15, 2013
Platinum compounds, such as cisplatin and carboplatin, induce DNA cross-linking, prohibiting DNA synthesis and repair in rapidly dividing cells. They are first line therapeutics in the treatment of many solid tumors, but ...

Recommended for you

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.