Research offers a new approach to improving HIV vaccines

June 4, 2015, Sanford-Burnham Medical Research Institute
HIV, the AIDS virus (yellow), infecting a human immune cell. Credit: Seth Pincus, Elizabeth Fischer and Austin Athman, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

In a scientific discovery that has significant implications for preventing HIV infections, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have identified a protein that could improve the body's immune response to HIV vaccines and prevent transmission of the virus.

The study shows how a protein called polyglutamine-binding protein 1 (PQBP1) acts as a front-line sensor and is critical to initiating an immune response to HIV. When the PQBP1 encounters the virus, it starts a program that triggers an overall protective environment against infection and enhances the production of virus-specific antibodies. The research, which identified PQBP1 as a target for improving HIV vaccines, was published June 4 online ahead of print in the journal Cell.

'Vaccines work by teaching the immune system to react by mimicking a natural infection,' said lead author Sunnie Yoh, Ph.D., a postdoctoral fellow in the lab of Sumit Chanda, Ph.D., director of the Immunity and Pathogenesis Program at Sanford-Burnham. 'Designing a drug that mimics the interface between HIV and PQBP1 would allow an HIV vaccine to more effectively re-create an immune environment that mirrors real infection.'

'Current approaches to HIV vaccine development have thus far yielded little fruit, partly because of the lack of an effective vaccine adjuvant. Adjuvants promote a robust immune response to vaccines and are critical to eliciting long-lasting immunity,' said Chanda. 'Our study identifies a promising new target for a vaccine adjuvant that could advance the development of HIV vaccines and prevent infection.'

How it works

Although the major target of HIV infection is CD4+ T cells, dendritic cells are one of the first cell types to encounter HIV during sexual transmission. After HIV infects cells, its DNA forms an interface with PQBP1 in sentinel and initiates the immune response.

Dendritic cells control the —a generic, non-specific defense against pathogens. These cells also activate the that generates highly specific antibodies that provide protective, long-lasting immunity. Both the innate and adaptive immune systems are necessary to provide an optimal immune response to vaccines.

'PQBP1 acts as a sentry for innate to HIV. The development of a highly effective HIV vaccine will likely depend on both combining the correct immunogens, which are viral proteins, and unlocking the innate response, to establish long-lived protection,' said Chanda. 'Now that we know the gatekeeper, it will be much easier to find a key.'

Explore further: Scientists find the invisibility cloak that shields HIV-1 from the immune system

Related Stories

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Harnessing immune cells' adaptability to design an effective HIV vaccine

March 21, 2013
In infected individuals, HIV mutates rapidly to escape recognition by immune cells. This process of continuous evolution is the main obstacle to natural immunity and the development of an effective vaccine. A new study published ...

Why HIV's cloak has a long tail

June 2, 2015
Virologists at Emory University School of Medicine, Yerkes National Primate Research Center, and Children's Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.

Past HIV vaccine trials reveal new path to success

March 19, 2014
A multi-national research team led by Duke Medicine scientists has identified a subclass of antibodies associated with an effective immune response to an HIV vaccine.

Individual genotype influences effectiveness of HIV vaccine

August 8, 2014
Almost 40 million people worldwide live with HIV/AIDS. Despite great effort, HIV-1 vaccine development has been challenging. A recent HIV vaccine trial, known as RV144, revealed that a combination of 2 vaccines protected ...

HIV vaccines elicit immune response in infants

October 8, 2013
A new analysis of two HIV vaccine trials that involved pediatric patients shows that the investigational vaccines stimulated a critical immune response in infants born to HIV-infected mothers, researchers at Duke Medicine ...

Recommended for you

New simulation tool predicts how well HIV-prophylaxis will work

June 14, 2018
A new mathematical simulation approach predicts the efficacy of pre- and post-exposure prophylaxis (PrEP) medications, which help prevent HIV infection. The framework, presented in PLOS Computational Biology by Sulav Duwal ...

Many at risk for HIV despite lifesaving pill

June 11, 2018
Multiple barriers may stop high-risk individuals from accessing an HIV drug that can reduce the subsequent risk of infection, according to a new University of Michigan study.

Active HIV in large white blood cells may drive cognitive impairment in infected mice

June 7, 2018
Macrophages, large white blood cells that engulf and destroy potential pathogens, harbor active viral reserves that appear to play a key role in impaired learning and memory in mice infected with a rodent version of HIV. ...

HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains

June 4, 2018
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world. The findings were reported ...

HIV study reveals new group of men at risk of infection

June 4, 2018
A group of men who may be underestimating their HIV risk has been identified in a new study.

Discovery reveals how cells try to control levels of key HIV protein

May 31, 2018
One of the many challenges in treating HIV is that the virus can lie dormant in cells, quietly evading immune detection until it suddenly roars to life without warning and begins replicating furiously. Salk Institute researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.