Gene discovery could lead to muscular dystrophy treatment

June 17, 2015
Gene discovery could lead to muscular dystrophy treatment
Smchd1 is responsible for 'silencing' other genes, and is dysfunctional in people with a form of muscular dystrophy.

Australian researchers have made a critical discovery about a gene involved in muscular dystrophy that could lead to future therapies for the currently untreatable disease.

Facioscapulohumeral (FSHD) is a progressive wasting disease that affects the face, arms and shoulders. It is most commonly diagnosed in teenage or early adults, and though it is rarely fatal is it very debilitating.

FSHD is inherited from the child's parents and affects one in 8000 children. No treatments or cures are currently available for the disease.

A research team led by Dr. Marnie Blewitt, Dr. James Murphy and Ms. Kelan Chen from the Walter and Eliza Hall Institute investigated the gene Smchd1, which is dysfunctional in people with a form of the disease called FSHD2.

Chan said that, as part of the study, the researchers duplicated the genetic changes found in some patients with FSHD2 to understand how the 'mutation' leads to disease.

"Our colleagues at the University of Leiden in the Netherlands work with patients who have FSHD2 and have been studying the in these families," Chan said.

"We reproduced in the lab the genetic change to Smchd1 found in one of the families to better understand how this mutation alters Smchd1 and its ability to function in the cell. We discovered that just a single change to one molecule that makes up the DNA can affect the ability of Smchd1 to reach and bind to the DNA properly, and it is no longer able to do its job."

Blewitt said this fundamental understanding of how Smchd1 functions would help researchers to develop future treatments for FSHD.

"FSHD is a , and we don't begin to see symptoms until the affected person is in their teens or early 20s," Blewitt said. "By understanding the function of Smchd1 and how mutations affects its function, we could in the long term develop drugs that would substitute for its activity and prevent the debilitating muscle wasting which occurs in FSHD."

Australian researchers have made a critical discovery about a gene involved in muscular dystrophy that could lead to future therapies for the untreatable disease. Credit: Walter and Eliza Hall Institute

Blewitt said the gene Smchd1—or "Smooch' as she calls it—encodes an epigenetic factor that switched genes off to suppress their function. "Epigenetic factors are like the punctuation marks on the DNA that enables the cell to read and comprehend it correctly for the functioning of the cell," Blewitt said.

"We knew that Smchd1 was an epigenetic suppressor—a factor that switches off genes that are unnecessary for that particular cells' function—but we were in the dark about where and how it was acting on the DNA."

They found Smchd1 was very unusual in its interactions with the genome. "Smchd1 is enormous, I think of it as a massive "Goliath' molecule," Blewitt said. "So I had expected that this Goliath molecule would be greedy and crude, spreading out across the DNA to 'exert its power".

"In fact the opposite was true. Smchd1 is still a Goliath, but it very delicately squeezes itself into a tiny 'seat' on the DNA. It binds at just a few discrete sites on the DNA, then draws these pieces together to 'shield' them from being activated."

The study was published in the journal Proceedings of the National Academy of Sciences.

Explore further: Mutations in genes that modify DNA packaging result in Facioscapulohumeral Muscular Dystrophy

More information: Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation, www.pnas.org/cgi/doi/10.1073/pnas.1504232112

Related Stories

Mutations in genes that modify DNA packaging result in Facioscapulohumeral Muscular Dystrophy

November 11, 2012
A recent finding by medical geneticists sheds new light on how Facioscapulohumeral Muscular Dystrophy develops and how it might be treated. More commonly known as FSHD, the devastating disease affects both men and women.

Telomere shortening affects muscular dystrophy gene

May 6, 2013
(Medical Xpress)—Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder that causes the muscles of the upper body to waste away. It is unusual in that symptoms do not usually appear until sufferers are in their ...

Researchers get a closer look at how the Huntington's gene works

May 4, 2015
Huntington's disease is caused by a mutation in the Huntington's disease gene, but it has long been a mystery why some people with the exact same mutation get the disease more severely and earlier than others. A closer look ...

Researchers find animal model for understudied type of muscular dystrophy

August 28, 2014
Researchers at the University of Minnesota have developed an animal research model for facioscapulohumeral muscular dystrophy (FSHD) to be used for muscle regeneration research as well as studies of the effectiveness of potential ...

Research team discovers genes and disease mechanisms behind a common form of muscular dystrophy

January 12, 2012
Continuing a series of groundbreaking discoveries begun in 2010 about the genetic causes of the third most common form of inherited muscular dystrophy, an international team of researchers led by a scientist at Fred Hutchinson ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.