Control system shows potential for improving function of powered prosthetic leg

June 9, 2015, The JAMA Network Journals

A control system that incorporated electrical signals generated during muscle contractions and gait information resulted in improved real-time control of a powered prosthetic leg for different modes of walking (such as on level ground or descending stairs), according to a study in the June 9 issue of JAMA, a theme issue on the Americans with Disabilities Act.

Most prosthetic lower limbs are mechanically passive (cannot provide power) and so do not restore full function. Leg prostheses that provide power are becoming available; however, different ambulation modes require very different control sequences for operating powered prosthetic limbs. Transitioning currently available powered limbs between different ambulation modes requires patients to slow down, stop, press buttons on an electronic key fob, or perform unrelated body movements. To maximize benefit from these devices and ensure patient safety, must automatically identify which ambulation mode the patient is using and provide the correct prosthesis response, according to background information in the article.

Electromyographic (EMG) signals—electrical signals generated during muscle contractions—are routinely used to control powered arm prostheses. Advanced pattern recognition algorithms can decode the unique EMG signal patterns generated by multiple muscles during specific movements, thus determining user intent and providing intuitive prosthesis control.

Levi J. Hargrove, Ph.D., of the Rehabilitation Institute of Chicago, and colleagues assessed the effect of including EMG data from residual muscles with mechanical sensor data in a real-time control system on ambulation performance using a powered . The trial included 7 patients with single-sided above-knee (n = 6) or knee-disarticulation (n = 1; separation at the knee joint) amputations. All patients were capable of ambulation within their home and community using a passive prosthesis (i.e., one that does not provide external power).

The researchers used pattern recognition algorithms to predict ambulation mode for the next stride. Electrodes were placed over 9 residual limb muscles and EMG signals were recorded as patients ambulated and completed 20 trials involving level­ground walking and stair and ramp ascent and descent. Data were acquired simultaneously from 13 mechanical sensors embedded on the prosthesis. Two real-time pattern recognition algorithms, using either (1) mechanical sensor data alone or (2) mechanical sensor data in combination with EMG data and historical information from earlier in the gait cycle were evaluated.

The order in which patients used each configuration was randomly assigned. The primary measured outcome for the trial was classification error for each real-time control system (defined as the percentage of steps incorrectly predicted by the control system).

The authors found that including EMG signals and historical information in the real-time control system resulted in significantly lower classification error (average, 7.9 percent) across an average of 683 steps compared with using mechanical sensor data only (average, 14.1 percent) across an average of 692 steps.

"This preliminary study is, to our knowledge, the first clinical evaluation of the ability of individuals with above-knee amputations to control a powered knee-ankle prosthesis across different ambulation modes and the first time EMG signals have been incorporated into a real-time control system for a powered lower limb prosthesis," the researchers write. "This control system allowed for automatic, natural transitions between ambulation modes, in contrast to current control systems that require the patient to use an electronic key fob or perform a set of exaggerated movements to transition between modes."

The authors note that the study had limitations that should be considered, including a small sample size, and experiments were only performed by patients who could already ambulate freely in a variety of environments. "Additional work needs to be completed to determine if patients with more limited ambulation capabilities could benefit from the proposed system."

"These preliminary findings, if confirmed, have the potential to improve the control of powered leg prostheses."

Explore further: Bionic leg undergoing clinical trials

More information: JAMA, DOI: 10.1001/jama.2015.4527

Related Stories

Bionic leg undergoing clinical trials

April 22, 2011
(Medical Xpress) -- A "bionic" leg designed for people who have lost a lower leg is undergoing clinical trials sponsored by the US Army. The researchers hope the leg will be able to learn the patient's nerve signal patterns ...

Prosthetic hands with a sense of touch? Breakthroughs in providing 'sensory feedback' from artificial limbs

May 29, 2015
Researchers are exploring new approaches to designing prosthetic hands capable of providing "sensory feedback." Advances toward developing prostheses with a sense of touch are presented in a special topic article in the June ...

Advanced prosthetic arm is approved for US market

May 9, 2014
US regulators on Friday approved for market a new kind of prosthetic arm that allows a person to flex certain muscles in order to perform complex tasks.

Ossur to announce clinical trials for implanted myoelectric sensors for brain-controlled prosthetics

May 21, 2015
Ossur, an Icelandic based prosthetics development company is set to announce the beginning of clinical trials for its Proprio foot, a new kind of brain controlled prosthetic ankle and foot. Instead of trying to connect the ...

Recommended for you

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Gene-edited stem cells show promise against HIV in non-human primates

April 19, 2018
Gene editing of bone marrow stem cells in pigtail macaques infected with simian/human immunodeficiency virus (SHIV) significantly reduces the size of dormant "viral reservoirs" that pose a risk of reactivation. Christopher ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.