The genetic roots of adolescent scoliosis

July 23, 2015
Adolescent idiopathic scoliosis -- a condition featuring curvature of the spine -- affects tens of millions of children worldwide, but does not have a known cause. Now, scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility to the condition. Credit: Nevit Dilmen

Adolescent idiopathic scoliosis—a condition featuring curvature of the spine—affects tens of millions of children worldwide, but does not have a known cause. Now, scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility to the condition. Published in the American Journal of Human Genetics, the work details how the susceptibility gene is associated with increased expression of the protein BNC2, which is in turn regulated by another protein called YY1.

"AIS is a complex and mysterious disease with awkward spinal deformities that can be a nightmare for affected people," explains team leader Shiro Ikegawa. "We were excited to find a single nucleotide polymorphism located on human chromosome number nine that is significantly associated with the disease."

The discovery began with a genome-wide association study using more than ten thousand volunteers with and without scoliosis. This type of study looks for small differences in genes—called , or SNPs—that occur more frequently in people with a certain disease. After confirming the association between a particular SNP (pronounced "snip") in two additional independent populations—one in Japan and one in China—they determined that it is located near the part of the DNA that codes for the protein BNC2.

The team then examined where BNC2 is expressed in humans. Using quantitative RT-PCR, they found that it is most highly expressed in the uterus, spinal cord, bone, and cartilage. "This result told us that we were on the right track," says Ikegawa, "and evidence that the SNP variation associated with the disease led to higher levels of BNC2 expression told us that this SNP has the potential to regulate expression of BNC2."

The team tested this hypothesis and found that not only was BNC2 expression triggered by the protein YY1—which binds to the DNA around the SNP—but that for genes with the at-risk SNP variant, the amount of BNC2 produced when YY1 was present was much greater than for genes with the non-risk variant.

The BNC2 gene is highly conserved across diverse species, and plays roles in a variety of tissues. To test how over-expression of BNC2 affects development, the team expressed it in zebrafish embryos and found that it resulted in severe body curvature that was positively correlated to the amount of BNC2.

These results and the abundance of BNC2 in the human spine and bones make it likely that adolescents with the disease-associated SNP variant may begin to produce excess BNC2 at puberty if other genetic or environmental factors are also present.

The next step is to understand how BNC2 causes scoliosis and why it is so much more prevalent in women than in men. "The expression of BNC2 in the uterus and changes that occur during puberty could help explain the large sex difference," explains Ikegawa. "Additionally, knowing what genes are downstream of BNC2 will provide us with potential targets for therapeutic interventions."

Explore further: Gene associated with adolescent idiopathic scoliosis identified

More information: Ogura et al. (2015) A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. American Journal of Human Genetics. DOI: 10.1016/j.ajhg.2015.06.012

Related Stories

Gene associated with adolescent idiopathic scoliosis identified

May 12, 2013
Researchers from the RIKEN Center for Integrative Medical Sciences in Japan have identified the first gene to be associated with adolescent idiopathic scoliosis (also called AIS) across Asian and Caucasian populations. The ...

Mechanism affecting risk of prostate cancer is found

January 10, 2014
A research group at Biocenter Oulu in Finland has identified a mechanism related to a transcription factor that binds much more strongly onto a particular SNP variant, thereby initiating a genetic programme which enhances ...

Researchers find chromosomal risk factors for a spinal disorder common in Japan

February 6, 2015
The spinal cord runs through a canal in the vertebrae that is lined with soft protective tissues. In patients with a condition known as ossification of the posterior longitudinal ligament of the spine (OPLL), bone begins ...

A break for bone disease research

July 29, 2011
Osteoporosis is the reduction in bone strength that occurs during aging, which increases the chance of elderly people experiencing breaks. A genome-wide association study in the Japanese population has revealed that a genomic ...

Discovery of a gene responsible for familial scoliosis

February 2, 2015
The discovery of the first gene causing familial scoliosis was announced by an international France-Canada research team today.

New research finds smoking and mother's genetics combine to increase likelihood of twins

April 17, 2015
African American mothers who smoke and have a genetic profile that includes a single nucleotide polymorphism (SNP) of the TP53 gene have an increased likelihood of having twins, concluded a team of researchers from the University ...

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.