Study identifies cause of resilience to tinnitus, drugs that can reduce chance of developing the debilitating condition

August 27, 2015, University of Pittsburgh Schools of the Health Sciences

Researchers have identified in an animal model the molecular mechanisms behind resilience to noise-induced tinnitus and a possible drug therapy that could reduce susceptibility to this chronic and sometimes debilitating condition. The findings by a team from the University of Pittsburgh School of Medicine were published online in the journal eLife.

Tinnitus is typically induced by exposure to loud noise and causes whistling, clicking, roaring and other phantom sounds. It is estimated that 5 to 15 percent of Americans suffer from tinnitus, said Thanos Tzounopoulos, Ph.D., associate professor and member of the auditory research group in the Department of Otolaryngology, Pitt School of Medicine, where he also holds the auditory physiology endowed chair.

The study results build on previous research in mouse models demonstrating that tinnitus is associated with hyperactivity of (DCN) cells, which fire impulses even when there is no actual sound to perceive. The team's work has shown that this hyperactivity is caused by a reduction in tiny channels, called KCNQ channels, through which potassium ions travel in and out of the cell. Based on this finding, KCNQ channel activators have emerged as clinical candidates for preventing the development of tinnitus.

"However, a significant percentage of people are exposed to loud sounds and never develop tinnitus, and there was little known about why that is. That's what we set out to examine in this study," Dr. Tzounopoulos said.

This newest study found that mice that are exposed to but do not develop tinnitus show a transient reduction in KCNQ2/3 channel activity, which is followed by a recovery of KCNQ2/3 activity and a reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity, another channel through which positively charged ions travel in and out of the cell.

The investigators believe a combination of drugs that enhance KCNQ2/3 channel activity and reduce HCN channel activity could promote resilience and reduce susceptibility to .

"We have already developed novel activators of KCNQ2/3 channels. The next step, in collaboration with Dr. Peter Wipf, a medicinal chemist from the University of Pittsburgh, is to develop specific blockers of HCN channels," Dr. Tzounopoulos said.

Explore further: Scientists find mechanism that causes noise-induced tinnitus and drug that can prevent it

More information: eLife, elifesciences.org/content/earl … 15/08/27/eLife.07242

Related Stories

Scientists find mechanism that causes noise-induced tinnitus and drug that can prevent it

May 27, 2013
An epilepsy drug shows promise in an animal model at preventing tinnitus from developing after exposure to loud noise, according to a new study by researchers at the University of Pittsburgh School of Medicine. The findings, ...

Quiet that ringing in the brain: New drug promises relief from epilepsy and tinnitus with fewer side effects

June 23, 2015
A new drug may treat epilepsy and prevent tinnitus by selectively affecting potassium channels in the brain, UConn neurophysiologist Anastasios Tzingounis and colleagues report in the 10 June Journal of Neuroscience.

In search of tinnitus, that phantom ringing in the ears

April 23, 2015
About one in five people experience tinnitus, the perception of a sound—often described as ringing—that isn't really there. Now, researchers reporting in the Cell Press journal Current Biology on April 23 have taken advantage ...

New study brings scientists a step closer to silencing tinnitus

June 16, 2014
New research funded by charity Action on Hearing Loss suggests that tinnitus can be eliminated by blocking signals between the ear and brain, offering hope to suffers that a cure is within reach, with prolonged exposure to ...

Study identifies key cellular mechanisms behind the onset of tinnitus

May 10, 2012
Researchers in the University of Leicester's Department of Cell Physiology and Pharmacology have identified a cellular mechanism that could underlie the development of tinnitus following exposure to loud noises. The discovery ...

Recommended for you

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

New parts of the brain become active after students learn physics

May 24, 2018
Parts of the brain not traditionally associated with learning science become active when people are confronted with solving physics problems, a new study shows.

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

Leg exercise is critical to brain and nervous system health

May 23, 2018
Groundbreaking research shows that neurological health depends as much on signals sent by the body's large, leg muscles to the brain as it does on directives from the brain to the muscles. Published today in Frontiers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.