Closer look at proteins involved in Parkinson's disease reveals segment involved in amyloid formation

September 10, 2015 by Bob Yirka, Medical Xpress report

Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia
(Medical Xpress)—A team of scientists from several research centers in the U.S. has taken a closer look at α-synuclein, a protein that is abundant in the human brain, and which is also involved in the development of Parkinson's disease. In their paper published in the journal Nature, the team describes their study and offers some new ideas on how neurodegenerative diseases may come about due to the formation of fibrils. Michel Goedert of Cambridge University in the U.K. and Yifan Cheng with the Howard Hughes Medical Institute offer a News & Views piece on the work done by the team and how it has added to a better understanding of how diseases such as Parkinson's get their start.

α-synuclein is a protein found most often in the tips of nerve cells and is believed to be involved in communication between neurons via lipid binding. In some cases, however, α-synuclein performs abnormally and causes to form—such fibrils tend to migrate causing damage to brain tissue and associated neurodegeneration—this is what happens in Parkinson's disease, which is still incurable. In this new study, the researchers took a closer look at a stretch of amino acids that are part of the makeup of α-synuclein—peptides corresponding to residues 68–78. Noting that crystals that form the core of them are too small to view with optical microscopy (because they are smaller than the wavelength of light) the team instead used micro-electron diffraction. Doing so allowed them to see not just the peptides, but pairs of face-to-face β-sheets, which are believed to be the building blocks of fibrils.

Most prior research has implicated residues located between 30 and 53 as the main culprit involved in the development of Parkinson's disease, but now, according to the results of this new research, it appears that residues between 68 and 78 may play a role as well. The researchers suggest that this region may interact with the more studied region in ways that cause enhanced fibril formation to occur.

Goedert and Cheng note that the newly uncovered structural information could help in the development of molecules able to inhibit the formation of α-synuclein fibrils, and thus serve as a means of stopping the progression of such degenerative diseases.

Explore further: SUMO defeats protein aggregates that typify Parkinson's disease

More information: Structure of the toxic core of α-synuclein from invisible crystals, Nature (2015) DOI: 10.1038/nature15368

Abstract
The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.

Related Stories

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

New molecule could slow Parkinson's

February 26, 2015
Researchers have designed a molecule that, if developed into a drug, could slow the progression of Parkinson's Disease.

A new tool for understanding Parkinson's disease

April 2, 2015
EPFL scientists have developed a new method that can accurately simulate the chemical modification of the protein behind Parkinson's disease. The technique, has opened a new way of understanding Parkinson's, and can be expanded ...

Single protein causes Parkinson's disease and multiple system atrophy

June 10, 2015
Several neurodegenerative disorders are caused by aggregates of a single protein known as alpha-synuclein. In collaboration with CNRS and the University of Antwerp, KU Leuven neurobiologists have discovered that the shape ...

Shape-shifting disease proteins may explain variable appearance of neurodegenerative diseases

July 3, 2013
Neurodegenerative diseases are not all alike. Two individuals suffering from the same disease may experience very different age of onset, symptoms, severity, and constellation of impairments, as well as different rates of ...

Recommended for you

Growing a brain: Two-step control mechanism identified in mouse stem cells

December 17, 2018
Scientists have identified two distinct control mechanisms in the developmental transition of undifferentiated stem cells into healthy brain cells. This fundamental research using mice may inform regenerative medicine treatments ...

Two compounds in coffee may team up to fight Parkinson's

December 10, 2018
Rutgers scientists have found a compound in coffee that may team up with caffeine to fight Parkinson's disease and Lewy body dementia—two progressive and currently incurable diseases associated with brain degeneration.

New Parkinson's disease drug target revealed through study of fatty acids

December 4, 2018
The human brain is rich in lipids. Investigators studying Parkinson's disease (PD) have become increasingly interested in lipids since both molecular and genetic studies have pointed to the disruption of the balance of the ...

A toxin that travels from stomach to brain may trigger Parkinsonism

December 4, 2018
Combining low doses of a toxic herbicide with sugar-binding proteins called lectins may trigger Parkinsonism—symptoms typical of Parkinson's disease like body tremors and slowing of body motions—after the toxin travels ...

Experimental cancer drug shows promise for Parkinson's

December 3, 2018
The study, funded by Parkinson's UK, suggests that the drug, tasquinimod, which is not yet on the market, works by controlling genes that may cause Parkinson's. This happens when the drug interacts with a protein inside brain ...

Parkinson's therapy creates new brain circuits for motor function, study finds

November 28, 2018
Scientists have uncovered that an emerging gene therapy for Parkinson's disease creates new circuits in the brain associated with improved motor movement. These findings, published today in Science Translational Medicine ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.