Coordinating traffic down the neuronal highway

September 21, 2015, National University of Singapore
First author of the study, postdoctoral fellow Dr Sun Jichao (left), with corresponding author, Associate Professor Low Boon Chuan (right). Credit: National University of Singapore

An international team of researchers, led by scientists at the National University of Singapore (NUS), has identified a protein that regulates the growth of neurons by transporting key metabolic enzymes to the tips of neural cells. Their findings, published on 14 September 2015, in Developmental Cell, a leading journal in the field of developmental biology, open up new avenues for design of drugs for ataxia, a motor coordination disorder.

Neurotransmitters—chemicals used by brain cells to communicate—are essential for brain function. In particular, acetylcholine, which was the first neurotransmitter to be discovered, is involved in cognition and motor functions. Although much is known about the synthesis and secretion of this critical neurotransmitter, the spatial and temporal regulation of acetylcholine synthesis remains unclear. Specifically, how key such as ATP citrate lyase (ACL) and choline acetyltransferase (ChAT) find their way to the right region of the neuron is largely unknown.

To unravel this puzzle, the NUS team, led by Associate Professor Boon Chuan Low and his postdoctoral fellow Dr Jichao Sun, from the Department of Biological Sciences and Mechanobiology Institute at NUS, collaborated with researchers from the Yong Loo Lin School of Medicine at NUS and the University of Michigan (U-M). They identified and characterised a protein that transports the enzyme ACL to the tips of neurons, where it subsequently recruits another enzyme ChAT for acetylcholine synthesis. This ACL-transporting protein, called BNIP-H, was first linked to Cayman ataxia, a rare genetic disorder affecting a region of the brain involved in motor control and which leads to difficulty in coordinating complex movements, by Professor Margit Burmeister of U-M.

The research team looked at the biological roles of BNIP-H in cell lines, primary neuron cultures and zebrafish using molecular genetics, protein biochemistry and high speed imaging. They found that BNIP-H acts as a tag, marking ACL for transport by the enzyme kinesin-1 to the neuron terminals. Once there, BNIP-H and ACL synergistically recruit ChAT, triggering the targeted release of acetylcholine. Using mass spectrometry, the researchers showed that expressing more BNIP-H in cultured cells could increase acetylcholine secretion while knockdown of BNIP-H reduced acetylcholine secretion. The BNIP-H-induced increase of acetylcholine in turn launches a positive feedback loop involving the MAPK/ERK signalling pathway that ultimately promotes growth of neurites, which are projections from neurons.

"BNIP-H defines the precise localisation, duration and strength of acetylcholine signalling that determines the growth of neurons and the coordination of body movements," explained Assoc Prof Low, the corresponding author of the paper.

The study also provides the first experimental data solidifying the link between dysfunctional cholinergic (acetylcholine) secretion and Cayman ataxia. The researchers showed that a BNIP-H mutant associated with Cayman ataxia caused defects in the transport of the ACL enzyme. Furthermore, they could also reproduce motor dysfunctions of Cayman ataxia in zebrafish by knocking down BNIP-H, ACL or ChAT enzymes. Interestingly, the lack of BNIP-H could be 'rescued' by the addition of a cholinergic agonist, suggesting that the loss of acetylcholine secretion resulting from BNIP-H mutation could explain some of the symptoms of Cayman ataxia.

Said Assoc Prof Low, "We established the first ACL-based ataxia model in the zebrafish that recapitulates the ataxic phenotype seen in human patients. Our findings provide the first detailed understanding at the molecular, cellular and organism levels on how defects in ACL trafficking impairs cholinergic signalling that leads to the development of ataxia."

Moving forward, the authors hope to further characterise the role of BNIP-H in cholinergic neurotransmission. Their work also serves as a foundation for further studies into acetylcholine-related diseases, and may lead to new treatments that involve BNIP-H.

"Our findings could provide new direction to better understand causes of cholinergic-related diseases, such as Alzheimer's disease, Down's syndrome, ataxia and schizophrenia. Changing the activity of BNIP-H or/and its downstream effectors might be used to treat those diseases caused by dysregulation of cholinergic neurotransmission," said Assoc Prof Low.

Explore further: Molecular imaging reveals marker of neurodegenerative disease

Related Stories

Molecular imaging reveals marker of neurodegenerative disease

June 8, 2015
Brain researchers have been working for years on targeting a cellular process involved in neurodegeneration and cognitive dysfunction. A specialized molecular imaging agent does the job by binding to a transporter of the ...

Research targets brain region affected by Parkinson's

November 8, 2011
A team of researchers at The University of Western Ontario has demonstrated that elimination of one of the neurotransmitters in the part of the brain associated with Parkinson's disease may improve brain function without ...

Understanding the molecular mechanism leading to addiction in humans

August 4, 2015
- A new study just published in the prestigious journal Molecular Psychiatry by the team led by Salah El Mestikawy, Ph.D., researcher at the Douglas Mental Health University Institute (CIUSSS de l'Ouest-de-l'île-de-Montréal), ...

Promising results for new Alzheimer therapy

February 13, 2015
Scientists at Karolinska Institutet have evaluated a new Alzheimer's therapy in which the patients receive an implant that stimulates the growth of a certain type of nerve cell. The results, which are published in the scientific ...

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Surprised? Cholinergic neurons send broadcasts enabling us to learn from the unexpected

August 27, 2015
When a large combat unit, widely dispersed in dense jungle, goes to battle, no single soldier knows precisely how his actions are affecting the unit's success or failure. But in modern armies, every soldier is connected via ...

Recommended for you

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

When there's an audience, people's performance improves

April 20, 2018
Often, people think performing in front of others will make them mess up, but a new study led by a Johns Hopkins University neuroscientist found the opposite: being watched makes people do better.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

MRI technique detects spinal cord changes in MS patients

April 20, 2018
A Vanderbilt University Medical Center-led research team has shown that magnetic resonance imaging (MRI) can detect changes in resting-state spinal cord function in patients with multiple sclerosis (MS).

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.