Study reveals new link between Down syndrome and Alzheimer's

November 2, 2015, Temple University
Domenico Praticò, M.D. Credit: The Lewis Katz School of Medicine at Temple University

Individuals with Down syndrome who survive into adulthood face the additional challenge of early-onset dementia, in which toxic amyloid plaques build up in the brain. The condition is strikingly similar to Alzheimer's disease, and as new work led by researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) shows, dementia in Down syndrome involves defects in a regulatory enzyme known as γ-secretase activating protein (GSAP), which also happens to malfunction in Alzheimer's disease.

In the field of Down syndrome research, the new findings are groundbreaking, and according to Domenico Praticò, MD, Professor in the Departments of Pharmacology and Microbiology and the Center for Translational Medicine at LKSOM and senior investigator on the study, the work could soon lead to the development of a specific GSAP-targeted therapy that is capable of safely mitigating dementia in Down syndrome. Previous γ-secretase inhibiting drugs failed in patients because of their high intrinsic toxicity.

The study, which appeared online in the Annals of Neurology, is the first to draw a connection between GSAP hyperactivity and excess processing of the Aβ precursor protein (APP) - the protein responsible for the final formation of - in Down syndrome. Dr. Praticò and colleagues made the discovery after examining donated tissue from the brains of deceased Down syndrome patients. Relative to postmortem brain tissue from healthy subjects, the samples from individuals with Down syndrome showed substantially elevated levels of both GSAP protein and its activity.

Dr. Praticò's team also found that GSAP hyperactivity was associated with abnormalities in the GATA1 transcription factor, which controls GSAP production. They demonstrated that when GATA1 activity was silenced in neurons that overexpressed APP, both GSAP levels and levels increased. Overexpression of GATA1, on the other hand, produced the opposite effect.

In Down syndrome, APP overexpression is extreme, reaching levels in the brain that are four to five times higher than normal. Its excess levels are a direct consequence of the triplicate copy of the 21st chromosome, which not only causes the syndrome in the first place but also houses the APP gene.

"The higher levels of APP in Down syndrome patients causes increased formation of amyloid beta peptides which then precipitate in the in the brain much earlier in life," Dr. Praticò explained. "Amyloid plaques begin to form in the brain of Down syndrome patients in the late teens and early 20s." Symptoms of dementia emerge in the following years.

The new findings could mark a turning point for Down syndrome survivors. "We've shown that GSAP inhibition reduces amyloid production, and because GSAP is specific to the formation of amyloid, without affecting other pathways, it should be a safe alternative to other strategies of a direct γ-secretase inhibition," Dr. Praticò said.

Dr. Praticò and colleagues already have access to a GSAP inhibitor. They plan next to investigate the effects of the agent in preclinical studies in mice. "We are very optimistic that our animal models will work," he said. "If they do, we will move to a clinical trial, where we hope to be able to reduce amyloid production safely and effectively."

Explore further: Down syndrome research untangles therapeutic possibilities for Alzheimer's

More information: Annals of Neurology: onlinelibrary.wiley.com/doi/10.1002/ana.24540/pdf

Related Stories

Down syndrome research untangles therapeutic possibilities for Alzheimer's

September 17, 2015
More than five million Americans are living with Alzheimer's disease (AD). Of them, 400,000 also have Down syndrome. Both groups have similar looking brains with higher levels of the protein beta amyloid. In fact, patients ...

New insight on why people with Down syndrome invariably develop Alzheimer's disease

October 23, 2014
A new study by researchers at Sanford-Burnham Medical Research Institute reveals the process that leads to changes in the brains of individuals with Down syndrome—the same changes that cause dementia in Alzheimer's patients. ...

Protein in the brain could be a key target in controlling Alzheimer's

January 25, 2012
A protein recently discovered in the brain could play a key role in regulating the creation of amyloid beta, the major component of plaques implicated in the development of Alzheimer's disease, according to researchers at ...

Overlooked for 30 years: Novel peptide plays role in Alzheimer's disease

August 31, 2015
A team led by Christian Haass has identified a novel peptide that plays a role in Alzheimer's disease: The previously overlooked eta-amyloid interferes with neuronal function and may antogonize beta-amyloid – a finding ...

Brain imaging changes in individuals with Down's may help advance Alzheimer's trials

April 14, 2015
Researchers have characterized three different brain imaging changes in individuals with Down syndrome, who are at very high risk for development of Alzheimer's disease, even before the onset of progressive memory and thinking ...

Recommended for you

Amyloid pathology transmission in lab mice and historic medical treatments

December 13, 2018
A UCL-led study has confirmed that some vials of a hormone used in discontinued medical treatments contained seeds of a protein implicated in Alzheimer's disease, and are able to seed amyloid pathology in mice.

Study links slowed brainwaves to early signs of dementia

December 13, 2018
To turn back the clock on Alzheimer's disease, many researchers are seeking ways to effectively diagnose the neurodegenerative disorder earlier.

New discoveries predict ability to forecast dementia from single molecule

December 11, 2018
Scientists who recently identified the molecular start of Alzheimer's disease have used that finding to determine that it should be possible to forecast which type of dementia will develop over time—a form of personalized ...

Researchers classify Alzheimer's patients in six subgroups

December 5, 2018
Researchers studying Alzheimer's disease have created an approach to classify patients with Alzheimer's disease, a finding that may open the door for personalized treatments.

Neuroscientists pinpoint genes tied to dementia

December 3, 2018
A UCLA-led research team has identified genetic processes involved in the neurodegeneration that occurs in dementia—an important step on the path toward developing therapies that could slow or halt the course of the disease. ...

Detecting signs of neurodegeneration earlier and more accurately

November 30, 2018
Signs of neurodegenerative diseases, appearing years before the emergence of clinical manifestations, can be detected during the examination of medical samples by means of fluorescence microscopy by using new sensitive and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.