'Self-sabotage' prevents immune protection against malaria

December 24, 2015, Walter and Eliza Hall Institute
Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.Dr. Axel Kallies (left) and Dr. Diana Hansen (right) from Melbourne's Walter and Eliza Hall Institute said the discovery opens up the possibility of improving new or existing malaria vaccines by boosting key immune cells needed for long-lasting immunity. Credit: Walter and Eliza Hall Institute of Medical Research

Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

The discovery opens up the possibility of improving new or existing malaria vaccines by boosting key immune needed for long-lasting immunity. This could even include vaccines that have previously been ineffective in clinical trials.

Researchers from Melbourne's Walter and Eliza Hall Institute discovered that the same inflammatory molecules that drive the immune response in clinical and severe malaria also prevent the body from developing protective antibodies against the parasite.

Dr Diana Hansen, Dr Axel Kallies and Dr Victoria Ryg-Cornejo led a research team that examined how the immune system responded to caused by Plasmodium falciparum. The findings were published today in the journal Cell Reports.

Dr Hansen said it was the first time scientists had pinpointed why the immune system fails to develop immunity during malaria infection.

"With many infections, a single exposure to the pathogen is enough to induce production of antibodies that will protect you for the rest of your life," Dr Hansen said. "However with malaria it can take up to 20 years for someone to build up sufficient immunity to be protected. During that time people exposed to malaria are susceptible to reinfection and become sick many times, as well as spreading the disease."

Malaria has traditionally been difficult to manage because the body is not good at developing long-lasting immunity to the parasite, which has hampered vaccine development, Dr Hansen said.

"This was complicated by the fact that we didn't know whether it was the itself or the inflammatory reaction to malaria that was actually inhibiting the ability to develop protective immunity.

"We have now shown that it was a double-edged sword: the strong that accompanies and in fact drives severe clinical malaria is also responsible for silencing the key needed for long-term protection against the parasite."

Dr Kallies said inflammatory molecules released by the body to fight the infection were preventing protective antibodies from being made. "Long-term immunity to malaria and other pathogens requires antibody responses," he said.

"Specialised immune cells called helper T cells join forces with B cells to generate these protective antibodies. However, we showed that during malaria infection critical inflammatory molecules actually arrest development of helper T cells and therefore the B cells don't get the necessary instructions to make antibodies."

Malaria is one of the most serious human infectious diseases, with about 250 million clinical cases each year. Children are particularly susceptible to because they have little or no immunity to the parasite. Severe malaria causes symptoms including anaemia, breathing difficulties, kidney failure and coma, and can quickly lead to death.

Dr Hansen said the findings could lead to new avenues in the search for effective malaria vaccines. "This research opens the door to therapeutic approaches to accelerate development of protective immunity to malaria and improve efficacy of malaria vaccines," she said.

"Until now, malaria vaccines have had disappointing results. We can now see a way of improving these responses, by tailoring or augmenting the vaccine to boost development of helper T cells that will enable the body to make protective antibodies that target the parasites."

Explore further: Improving human immunity to malaria

Related Stories

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Cross-species malaria immunity induced by chemically attenuated parasites

July 1, 2013
Malaria, a mosquito-born infectious disease, kills over 600,000 people every year. Research has focused on the development of a vaccine to prevent the disease; however, many malaria vaccines targeting parasite antigens have ...

How the immune system prevents repeated malaria fever episodes in highly exposed children

April 17, 2014
Children in Mali (and many other regions where malaria is common) are infected with malaria parasites more than 100 times a year, but they get sick with malaria fever only a few times. To understand how the immune system ...

Malaria severity not determined solely by parasite levels in blood

May 7, 2014
Although malaria kills some 600,000 African children each year, most cases of the mosquito-borne parasitic disease in children are mild. Repeated infection does generate some immunity, and episodes of severe malaria are unusual ...

Lifting malaria's deadly veil: mystery solved in quest for vaccine

August 6, 2012
(Medical Xpress) -- Researchers at the Burnet Institute have made a major breakthrough in the quest for a vaccine against malaria, which causes up to one million deaths each year.

How malaria evades the body's immune response

July 12, 2012
(Medical Xpress) -- The parasites that cause human malaria and make it particularly lethal have a unique ability to evade destruction by the body’s immune system, diminishing its ability to develop immunity and fight ...

Recommended for you

Study demonstrates new treatment for severe asthma

May 22, 2018
Researchers from McMaster University and the Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton, together with colleagues at other partnering institutions, have developed a new method to treat ...

Eczema drug effective against severe asthma

May 21, 2018
Two new studies of patients with difficult-to-control asthma show that the eczema drug dupilumab alleviates asthma symptoms and improves patients' ability to breathe better than standard therapies. Dupilumab, an injectable ...

Neuron guidance factor found to play a key role in immune cell function

May 21, 2018
Macrophages are white blood cells involved in a variety of biological functions, from destroying infectious pathogens to repairing damaged tissue. To carry out their different roles, macrophages must first be activated and ...

Immune cells hold promise in slowing down ALS

May 21, 2018
Recent research from Houston Methodist Hospital showed that a new immunotherapy was safe for patients with ALS and also revealed surprising results that could bring hope to patients who have this relentlessly progressive ...

First clues to the causes of multiple sclerosis

May 16, 2018
Multiple sclerosis, which affects one in 1,000 people, is frequently characterised by relapses associated with variable functional impairments including among others vision problems, impairment of locomotor functions or difficulties ...

A high-fiber diet protects mice against the flu virus

May 15, 2018
Dietary fiber increases survival in influenza-infected mice by setting the immune system at a healthy level of responsiveness, according to a preclinical study published May 15th in the journal Immunity. A high-fiber diet ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.