New drug target for Rett syndrome

February 2, 2016
Callosal projection neurons (green) are shown in the cerebral cortex. Credit: Jessica MacDonald and Jeffrey Macklis

Harvard Stem Cell Institute (HSCI) researchers have identified a faulty signaling pathway that, when corrected, in mice ameliorates the symptoms of Rett syndrome, a devastating neurological condition. The findings could lead to the discovery of compounds or drugs that may benefit children affected by the disease, says neurobiologist Jeffrey Macklis, Max and Anne Wien Professor of Life Sciences in the Department of Stem Cell and Regenerative Biology, and Center for Brain Science, at Harvard University, who directed the work.

The research was recently published online in Nature Communications. Noriyuki Kishi and Jessica MacDonald, both recent postdoctoral fellows in the Macklis laboratory, are co-first authors.

Rett syndrome is a relatively common neurodevelopmental disorder, the second most common cause of intellectual disability in girls after Down's syndrome; it is associated with a dysfunctional gene on the X chromosome. Boys with Rett syndrome are rare, because male fetuses who carry the mutations on their one X chromosome usually have prenatally lethal forms of the disease. Girls with Rett syndrome appear to develop relatively normally for the first six to eighteen months of life, but then regress; they tend to lose their ability for speech and the purposeful use of their hands, withdraw from social situations, and wring their hands.

Austrian physician Andreas Rett first described the disorder in 1966, but it wasn't until 1999 that Huda Zoghbi and her lab at Baylor College of Medicine identified mutations in the gene MECP2 as the root cause of Rett syndrome. MECP2, however, turns a very large number of genes on and off throughout the entire body, so it has been a longstanding puzzle why girls and rare boys with Rett syndrome have this very specific and reproducible developmental cognitive brain disorder.

"My view was that MECP2 mutation in Rett syndrome disrupts so many genes and their protein products that we weren't going to find a single gene that we could fix to help girls with Rett," said Macklis, a member of HSCI's Executive Committee, former Program Head of HSCI's Nervous System Diseases Program, and an Allen Distinguished Investigator of the Paul G. Allen Family Foundation. "But if we found a disrupted, improperly regulated that was 'drug-able,' that affected enough of the girls' pathology, we might be able to make them dramatically functionally better with already available therapeutics- and that might make a real difference in their lives and their families' lives."

Instead of concentrating on the MECP2 gene, Macklis' group focused on neurons he knew were "abnormal and implicated in Rett syndrome and autism spectrum disorders," and in 2004, Macklis' lab was the first to describe abnormal development in this type of neurons responsible for communicating signals between the two hemispheres of the brain. These neurons, called inter-hemispheric callosal projection neurons (CPN), have shorter, less developed dendrites, or "receiving antennas" in mice with the Rett gene mutations, and in individuals with Rett syndrome.

Building on their 2004 findings, the researchers were able to fluorescently label CPN in mice with or without the Rett mutation, purify them from other types of neurons, and look at the levels at which many thousands of genes were active, and thus how much of the proteins coded for by those those genes was made.

They found one gene for IRAK1, which Macklis' group identified to be regulated by MECP2 and is a well-known part of the NF-kB signaling pathway, was making about three times more protein than normal. They modified IRAK1 levels both in mice with Rett mutations and in mouse neurons in culture dishes. When they reduced the activity of its gene Irak1 by roughly half, and consequently the amount of IRAK1 protein made, the neurons and their dendrites developed substantially better, indistinguishable by several assays from normal. Further, mice with reduced levels of IRAK1 had significantly fewer symptoms, better function, and much longer lifespan. They had much improved health, well beyond only these neurons.

Now, Macklis said, the researchers have started looking into potential compounds and drugs that are already available and that might partially correct this pathway, and what dosages and timing might ultimately ameliorate the affects of Rett syndrome.

Explore further: Discovery of a new drug target could lead to novel treatment for severe autism

More information: Noriyuki Kishi et al. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice, Nature Communications (2016). DOI: 10.1038/ncomms10520

Related Stories

Discovery of a new drug target could lead to novel treatment for severe autism

January 4, 2016
Penn State University scientists have discovered a novel drug target and have rescued functional deficits in human nerve cells derived from patients with Rett Syndrome, a severe form of autism-spectrum disorder. The research, ...

Rett syndrome gene dysfunction redefined

October 3, 2013
Whitehead Institute researchers have redefined the function of a gene whose mutation causes Rett syndrome, a neurodevelopmental autism spectrum disorder. This new research offers an improved understanding of the defects found ...

Surprising contributor to Rett syndrome identified

April 21, 2015
The immune system is designed to protect us from disease. But what if it was malfunctioning? Would it make a disease worse? That appears to be the case with Rett syndrome, a neurodevelopmental disorder, and possibly in other ...

Discovered a cause of mental retardation and autism

July 20, 2015
The term intellectual disability covers a large number of clinical entities, some with known cause and others of uncertain origin. For example Down syndrome is due to an extra copy of chromosome 21 and Rett syndrome is in ...

Mystery of Rett timing explained in MeCP2 binding

April 13, 2015
For decades, scientists and physicians have puzzled over the fact that infants with the postnatal neurodevelopmental disorder Rett syndrome show symptoms of the disorder from one to two years after birth.

Recommended for you

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.